
 Advanced search

Linux Journal Issue #117/January 2004

Features

Controlling Hardware with ioctls by Lisa Corsetti
Control all the little stuff that isn't in the UNIX programming
books.

Understanding Caching by James Bottomley
Use the cache right, and your code runs fast.

Scaling dcache with RCU by Paul E. McKenney, Dipankar Sarma and
Maneesh Soni

As the number of processors grow, Linux either can hit a
performance wall or explore new algorithms.

Signed Kernel Modules by Greg Kroah-Hartman
Crypto techniques give device drivers a new security check.

Indepth

Testing Applications with Xnee by Henrik Sandklef
Give your GUI apps a scriptable test suite with simulated X
clicks and input.

Linux, Talon and Astronomy by Tony Steidler-Dennison
The software that controls research-grade telescopes can
control your telescope too.

Controlling Devices with Relays by Jason Ellison
Your software can break free of the box and control lights, bells
and motors in the real world.

Intermediate Emacs Hacking by Charles Curley
You don't have to be a LISP hacker to customize Emacs.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/117/6908.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/7105.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/7124.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/7130.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/6660.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/6673.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/6693.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/6771.html

Monitoring Hard Disks with SMART by Bruce Allen
Keep an eye on your drives' health with an easy-to-configure
tool.

Linux in Air Traffic Control by Tom Brusehaver
Using Linux as a testing platform for mission-critical software.

Embedded

Personal Video Recorder Basics by Christian A. Herzog
Create a custom PVR that works your way and even burns
archive copies.

Toolbox

At the Forge Publishing with Bricolage by Reuven M. Lerner
Cooking with Linux Scalability: from Simplicity Comes Complexity
by Marcel Gagné
Paranoid Penguin Secure Mail with LDAP and IMAP, Part II by Mick
Bauer

Columns

Linux for Suits Laptopia by Doc Searls
EOF Turning IT Certification on Its Ear by Evan Leibovitch

Reviews

IBM eServer BladeCenter by Dana Canfield
Red Hat Linux 9 Bible by Frank Conley
Hacking the Xbox by Paul Barry

Departments

Letters
From the Editor
On the Web
Best of Technical Support
New Products

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/117/6983.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/7066.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/7171.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/7202.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/7201.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/7191.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/7198.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/7142.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/7021.html
https://secure2.linuxjournal.com/ljarchive/LJ/115/6919.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/7112.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/7173.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/7227.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/7195.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/7194.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/7196.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Controlling Hardware with ioctls

Lisa Corsetti

Issue #117, January 2004

Once you learn the ioctl system call, you'll be able to check the status of the
Ethernet link light and other miscellaneous but important facts about
hardware.

A few years ago, I had a laptop that I used at work and at home. To simplify my
network configuration and not have to change it manually depending on where
I was, I decided to use DHCP in both places. It was the standard at work, so I
implemented a DHCP server at home. This worked well except when I booted
the system without it being plugged in to either network. When I did, the laptop
spent a lot of time trying to find a DHCP server without success before
continuing the rest of the startup process.

I concluded that an ideal solution to this lag time would be for the system to
start with the Ethernet interface down and have it come up if, and only if, the
cable was connected to a hub, that is, if I had a link light on the Ethernet
interface. The best way to do this appeared to be having a shell script call a
program whose return code would indicate whether a link had been
established on a particular network interface. So began my quest for a method
to determine this link status of my 10/100Base-T interface.

Not having done much low-level Linux programming, it took me a bit of time to
discover that most of this type of interaction with device drivers usually is done
through the ioctl library call (an abbreviation of I/O control), prototyped in sys/
ioctl.h:

int ioctl(int, int, ...)

The first argument is a file descriptor. Because all devices in Linux are accessed
like files, the file descriptor used usually is one that has been opened with the
device to which you are interfacing as the target. In the case of Ethernet

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

interfaces, however, the fd simply is an open socket. Apparently, no need exists
to bind this socket to the interface in question.

The second argument in ioclt.h is an integer that represents an identification
number of the specific request to ioctl. The requests inherently must vary from
device to device. You can, for example, set the speed of a serial device but not a
printer device. Of course, a specific set of commands exists for network
interfaces.

Additional arguments are optional and could vary from the ioctl
implementation on one device to the implementation on another. As far as I
can tell, a third argument always is present, and I have yet to find more than a
third. This third argument usually seems to be a pointer to a structure. This
allows the passing of an arbitrary amount of data in both directions, the data
being defined by the structure to which the pointer refers, simply by passing
the pointer.

A basic example of how ioctl works is shown in the following simple program
that checks the status of one signal on a serial port:

#include <termios.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/ioctl.h>

main()
{
 int fd, status;

 fd = open("/dev/ttyS0", O_RDONLY);
 if (ioctl(fd, TIOCMGET, &status) == -1)
 printf("TIOCMGET failed: %s\n",
 strerror(errno));
 else {
 if (status & TIOCM_DTR)
 puts("TIOCM_DTR is not set");
 else
 puts("TIOCM_DTR is set");
 }
 close(fd);
}

This program opens a tty (serial port) and then calls ioctl with the fd of the
serial port, the command TIOCMGET (listed as get the status of modem
bits) and a pointer to an integer into which the result is returned.

The ioctl result then is checked to see whether an error was made in processing
the request. If there are no problems, we check the values returned by anding
them with TIOCM_DTR. This step yields true or false, nonzero or zero,
respectively.

Using ioctl for Ethernet drivers is a similar process. The third parameter to ioctl
calls for socket ioctl calls (where the fd is a socket handle) often is a pointer to a
ifreq (interface request) structure. The type deceleration for ifreq structures can
be found in net/if.h.

Unfortunately, documentation for many of the ioctl interfaces is difficult to find,
and there are at least three different APIs for accessing network interfaces. I
originally wrote this program using the MII (media independent interface)
method. While writing this article, with the most recent kernel installed on my
machine, however, I discovered I had to add the ETHTOOL method.

After adding ETHTOOL, I then modified the program and wrote each interface
method as a subroutine. The modified program tries one method, and if it fails,
attempts the other. The third method predates the MII API, and I have not yet
run into a machine on which I have needed it, so the code is not included.

The information on using the MII interface was acquired mainly by examining
the mii-diag program (ftp.scyld.com/pub/diag/mii-diag.c) written by Donald
Becker, which I found on Scyld Computing Corporation's Web site. This site also
contains an excellent page (www.scyld.com/diag/mii-status.html) explaining the
details of the MII status words that the ioctl functions may return. Here,
however, I focus on the ETHTOOL interface because it is the newer method. The
program and both interfaces are available from the Linux Journal FTP site at
ftp.linuxjournal.com/pub/lj/listings/issue117/6908.tgz.

Information on using the ETHTOOL API also was acquired by scouring various
pieces of source code, not the least of which was the source code for the
network interface drivers themselves—particularly eepro100.c. Also helpful was
an e-mail written by Tim Hockin that I found while Googling.

In writing my program, I set the default interface to eth0 unless a parameter
was passed to the program. The interface ID is stored in ifname. Because the
ioctl commands I use are specific to network interfaces, using some other
device likely will cause a “cannot determine status” to be returned.

Before calling ioctl we need a file handle, so we first must open a socket:

int skfd;
if ((skfd = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
 {
 printf("socket error\n");
 exit(-1);
 }

In the standard try-to-check-for-all-errors C coding style, I placed this inside an
if statement that simply prints an error and terminates the program, returning

ftp://ftp.scyld.com/pub/diag/mii-diag.c
http://www.scyld.com/diag/mii-status.html
https://secure2.linuxjournal.com/ljarchive/LJ/listings/117/6908.tgz

a -1 if the socket does not open properly. For my purposes, I would rather
report errors in determining status as a lack of a link rather than as a presence
of one, so a found link is reported as 0 and not found is reported as 1.

The new ETHTOOL API for interfacing to the driver has made determining the
status of the link much easier than did the previous method. ioctl was
implemented for ETHTOOL interfaces such that there is now only ONE ioctl
command, SIOCETHTOOL (which specifies that the call is an ETHTOOL
command), and the data block passed then contains the specific subcommand
for the ETHTOOL interface.

The standard ioctl data structure (type ifreq) requires two additional items: the
name of the interface to which the command should be applied and an address
of a structure (type ethtool_value) in which to store the specific command as
well as the returned information.

The structures and most other information (including the commands available)
are located in the ethtool.h header file. The command that I needed was
ETHTOOL_GLINK, documented as “get link status”, which I stored in edata.cmd:

edata.cmd = ETHTOOL_GLINK;

The name of the interface and the address of the edata structure both need to
be placed into the ifreq structure:

strncpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name)-1);
ifr.ifr_data = (char *) &edata;

At this point, all that remains is making the ioctl call, checking the return value
(to be sure the command type was allowed) and checking the data in the
structure pointed to by the returned pointer to see if the link is up or down:

if (ioctl(skfd, SIOCETHTOOL, &ifr) == -1) {
 printf("ETHTOOL_GLINK failed: %s\n", strerror(errno));
 return 2;
}
return (edata.data ? 0 : 1);

In this case, my code returns a 0 for link up, a 1 for link down and a 2 for
undetermined or failure. This code allows me to call this function from my
rc.local, bring the interface up and either call dhcpcd or pump to get an IP
address only if the system is plugged in to a functioning hub/switch. Here is the
relevant section of rc.local:

/root/sense_link/sense_link | logger

if /root/sense_link/sense_link > /dev/null; then
 logger "No link sense -- downing eth0"
 /sbin/ifconfig eth0 down
else
 logger "Sensed link - dhcping eth0"
 /sbin/dhcpcd eth0
fi

First, the output of sense_link is sent to the system log. Then, if no link was
sensed on eth0, or if it could not be determined, a message is written to the log
and eth0 is taken down. If a link was sensed, dhcpcd is executed on eth0.

Once this is implemented, my rc.local file now executes quite quickly when no
network cable is plugged in or when a DHCP server is active and found. The
only time I still experience significant delays is if I am plugged in to a network
where there is no active DHCP server.

I haven't yet tried this code with my 802.11b card to see if it can detect a link on
it before attempting to contact a DHCP server, because I usually only have the
PCMCIA card plugged in when I am in a location that I know has a server. It
would be an interesting experiment and a useful extension, however, for an
interested party.

Lisa Corsetti presently is a software architect as well as the president of Anteil,
Inc., a consulting firm that focuses on custom Web-based applications for
various industries and government. Lisa received a BS in Electrical and
Computer Engineering from Drexel University.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/toc117.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Understanding Caching

James Bottomley

Issue #117, January 2004

Architectures that support Linux differ in how they handle caching at the
hardware level. Here's how the kernel gets the best possible use out of every
cache design.

Since the earliest days of microprocessors, system designers have been
plagued by a problem in which the speed of the CPU's operation exceeded the
bandwidth of the memory subsystem to which it was connected. To avoid
wasting CPU cycles while waiting for the memory to fetch the requested data,
the universally adopted solution was to use an area of faster (and thus more
expensive) memory to cache main memory data. This solution allowed the CPU
to operate at its natural speed as long as the data it required was available in
the cache.

The purpose of this article is to explain caching from the point of view of a
kernel programmer. I also explain some of the common terms used to describe
caches. This article is divided into sections whose kernel programming
relevance is indicated; that is, some sections explain that cache properties are
irrelevant to understanding the essentials of how the kernel handles caching. If
you're coming from an Intel IA32 background, caching is practically transparent
to you. In order to write kernel code that operates correctly on all the
architectures Linux supports, however, you need to know the essentials of how
caching works in general.

A Cache and Its Properties

Simply put, a cache is a place that buffers memory accesses and may have a
copy of the data you are requesting. Usually one thinks of caches (there may be
more than one) as being stacked; the CPU is at the top, followed by layers of
one or more caches and then the main memory. In this hierarchy, caches are
quantified by their level. The cache closest to the CPU is called level one, L1 for
short, and caches increase in level until the main memory is reached.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

A cache line is the smallest unit of memory that can be transferred to or from a
cache. The essential elements that quantify a cache are called the read and
write line widths. These signify the minimum amount of data the cache must
read or write from the memory or cache below it. Frequently, these quantities
are the same, so caches often are quantified simply by the line width. Even if
they differ, the longest width usually is called the line width.

The next property that quantifies a cache is its size. This number is an
indication of how much data could be stored in the cache. Often, the
performance rule of thumb is the bigger the cache, the better the benchmarks.

A multilevel cache can be either inclusive or exclusive. Exclusive means a
particular cache line may be present in exactly one of the cache levels and no
more than one. Inclusive means the line may be present simultaneously in
more than one level of cache. Nothing prevents the line widths from being
different in differing cache levels.

Finally, a particular cache can be either write through or write back. Write
through means the cache may store a copy of the data, but the write must be
completed at the next level down before it can be signaled as complete to the
layer above. Write back means a write may be considered complete as soon as
the data is stored in the cache. For a write back cache, as long as the written
data is not transmitted, the cache line is considered dirty, because it ultimately
must be written out to the level below.

Cache Management and Coherency

One of the most basic problems with caches is coherency. A cache line is
termed coherent when the data in the line is identical to the data stored in the
main memory being cached. If this is not true, the cache line is termed
incoherent. Lack of coherency can cause two particular problems. The first
problem, which may occur for all caches, is stale data. In this situation, data has
changed in main memory but the cache hasn't been updated to reflect the
change. This usually manifests itself as an incorrect read, as illustrated in Figure
1. This is a transient error, because the correct data is sitting in main memory;
the cache simply needs to be told to bring it in.

https://secure2.linuxjournal.com/ljarchive/LJ/117/7105f1.large.jpg

Figure 1. Stale Data Problem

The second problem, which occurs only with write back caches, can cause
actual destruction of data and is much more insidious. As illustrated in Figure 2,
the data has been changed in memory, and it also has been changed
separately by a CPU write to the cache. Because the cache must write out one
line at a time, there now is no way to reconcile the changes—either the cache
line must be purged without being written, losing the CPU's change, or the line
must be written out, thus losing the changes made to main memory. All
programmers must avoid reaching the point where data destruction becomes
inevitable; they can do this through the judicious use of the various cache
management APIs.

https://secure2.linuxjournal.com/ljarchive/LJ/117/7105f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7105f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7105f2.large.jpg

Figure 2. Data Destruction by Dirty Cache Lines

Cache-Line Interference

The situation where two sets of independent data lie in the same cache line,
potentially leading to the data destruction detailed above, is termed cache-line
interference. If you are laying out data structures in memory, the general rule
to avoid this situation is never, ever have data that can be modified outside of
the caches mixed with data the CPU may ordinarily use. If you absolutely have
to violate this rule, make sure all externally modifiable elements of the
structure are aligned L1_CACHE_BYTES, a value set at compile time to the
largest possible cache width value for all the processors on which your code
may run. The best thing to do is use kmalloc to allocate two separate regions.
kmalloc never allocates two regions that overlap in a cache line.

https://secure2.linuxjournal.com/ljarchive/LJ/117/7105f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7105f2.large.jpg

Cache Management Instructions

The most basic instruction, called an invalidate, simply ejects the nominated
line from all caches. Any reference to data in that line causes it to be re-fetched
from main memory. Thus, the stale data problem may be resolved by
invalidating the cache line before reading the data. In Linux, such an
invalidation is done with:

void
dma_cache_inv(unsigned long address
 unsigned long size);

where address is the virtual address on which to begin, and size is the length of
data to invalidate. Note that size is rounded up automatically to a multiple of
the cache line width.

For write back caches, any dirty cache line may be written out, or flushed, to
main memory using:

void
dma_cache_wback(unsigned long address,
 unsigned long size);

This flushing must be done before anything changes the main memory under
the dirty cache line. You therefore must issue the flush before an external
entity (such as a PCI card) modifies main memory and issue an invalidate after
this flush but before the CPU accesses any data that has changed.

In theory, for write back caches an invalidate kills the cache line without actually
writing the data out, thus destroying the data in the cache. A safer thing to do
in this case is issue a flush and invalidate instruction:

void
dma_cache_wback_inv(unsigned long address,
 unsigned long size);

This flushes the cache lines to main memory and then invalidates them from
the cache.

Types of Caches

This section explains how a cache actually works. The only vital piece of
information you need from this section is a property called aliasing, which
means that the same physical address in memory may be cached in multiple
distinct cache lines. How the kernel actually manages the aliases is discussed in
the following section.

In a directly mapped cache, as shown in Figure 3, the cache is divided up into
cache lines of known width (four in the example). Each line in the cache is
characterized by a unique index, so every byte in the cache is addressed by the
index of the line and offset into the line. Each index of the cache also possesses
a hidden number called the tag.

Figure 3. A Directly Mapped Cache

Every address in the system is divided into three pieces—tag, index and offset
—along a power of two boundary (Figure 4). When a line is brought into the
cache, the tag and index are extracted from the address. The line is stored in
the cache at the required index, and the hidden tag is stored along with the line
data. When the CPU makes reference to a particular address, the cache is
consulted at the given index. If the tags match, the offset into the line is fetched
to satisfy the address reference. If the tags do not match, the current line may
be flushed back to main memory and the correct line brought into the cache.

Every cache-able address has one and only one corresponding index line, which
can cause problems. For instance, if the processor reads a sequence of
addresses that accidentally happen to correspond to the same cache index, the
cache line must be evicted and re-fetched on each read. Such a situation easily
can happen in, say, a for loop reading elements of a structure that happens to
be about the same size as the cache. For directly mapped caches, the index

https://secure2.linuxjournal.com/ljarchive/LJ/117/7105f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7105f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7105f3.large.jpg

sometimes is called the cache color, and this problem is called the cache-line
coloring problem.

To get around the coloring problem of directly mapped caches, cache circuitry
sometimes is arranged so that a cache lookup can compare tags
simultaneously in more than one cache line. In an N-way associative cache,
each index corresponds to N cache lines (and tags); thus, we can have up to N
addresses with the same index simultaneously in the cache. The added parallel
cache lookup circuitry tends to increase the cost of associativity somewhat, so it
usually is found only in higher-end CPUs.

At the very top of the range, you might find a fully associative cache. This type
of cache has no index at all, and all lines are consulted at once when looking for
a particular tag.

All modern CPUs handle address translation, which means the virtual address
used by the kernel or application to refer to memory isn't the same as the
physical address where the data actually resides. The caches can be placed
before or after address translation, and sometimes in a hierarchical cache
there is a mixture of placements. Each of these placements has different
properties and features as described below.

In physically indexed, physically tagged (PIPT) caches, the tag and index of the
cache are both in physical memory, that is, after virtual address translation has
been done. This process is nice and simple, but the disadvantage of PIPT caches
is that a valid address translation must be in the TLB (translation lookaside
buffer) of the CPU. If such a TLB entry needs to be fetched from memory before
the address translation can be done, the advantage of caching the data is lost.
Even if a TLB entry is present, the TLB lookup and the cache lookup must be
done sequentially, making these caches slow.

In virtually indexed, virtually tagged (VIVT) caches, on the other hand, both the
index and tag are in the virtual address space in which the CPU currently is
operating. Although this makes cache lookups much faster (no address
translation needs to be done before the lookup or after, if the cache lookup is
successful), they suffer from several other problems:

1. Virtual address translations usually are changed as part of normal kernel
operation, so the cache must pay careful attention to changes in TLB
entries (and changes in address space) and flush cache lines whose
translations have changed.

2. Even in a single address space, multiple virtual addresses may exist for
the same physical address. Each of these virtual addresses would be

cached separately, even though they represent the same data. This is
called the cache-line aliasing problem.

Generally, though, the added lookup speed of a VIVT cache outweighs its
disadvantages, making it the predominant cache type for non-x86 CPUs.

A type of hybrid cache designed to overcome some of the shortcomings of the
VIVT cache without sacrificing too much of its speed advantage is virtually
indexed, physically tagged (VIPT) caching. The index is on the virtual address,
but the tag is on the physical address, so the combination (tag, offset) must
specify the full physical address. This requirement causes the tags to be larger
than the tags for other cache types.

The VIPT cache gains its speed advantage over PIPT because the address
translation and the cache lookup now can be done in parallel. The CPU doesn't
know if the cache line is valid (the tags match), however, until the address
translation has completed.

The disadvantages of VIVT are overcome because the tag is physical, thus the
VIPT cache automatically detects aliasing when it sees that two tags are
identical in the cache. Thus, a VIPT cache may be constructed in such a fashion
that cache-line aliasing never occurs.

This fourth theoretical type of cache, physically indexed, virtually tagged (PIVT),
is basically useless and is not discussed further.

The Aliasing Problem

Any time the kernel sets up more than one virtual mapping for the same
physical page, cache line aliasing may occur. The kernel is careful to avoid
aliasing, so it usually occurs only in one particular instance: when the user
mmaps a file. Here, the kernel has one virtual address for pages of the file in
the page cache, and the user may have one or more different virtual addresses.
This is possible because nothing prevents the user from mmaping the file at
multiple locations.

When a file is mmaped, the kernel adds the mapping to one of the inode's lists:
i_mmap, for maps that cannot change the underlying data, or i_mmap_shared,
for maps that can change the file's data. The API for bringing the cache aliases
of a page into sync is:

void flush_dcache_page(struct page *page);

This API must be called every time data on the page is altered by the kernel,
and it should be called before reading data from the page if page->mapping-

>i_mmap_shared is not empty. In architecture-specific code, flush_dcache_page
loops over the i_mmap_shared list and flushes the cache data. It then loops
over the i_mmap list and invalidates it, thus bringing all the aliases into sync.

Separate Instruction and Data Caches

In their quest for efficiency, processors often have separate caches for the
instructions they execute and the data on which they operate. Often, these
caches are separate mechanisms, and a data write may not be seen by the
instruction cache. This causes problems if you are trying to execute instructions
you just wrote into memory, for example, during module loading or when using
a trampoline. You must use the following API:

void
flush_icache_range(unsigned long start,
 unsigned long end);

to ensure that the instructions are seen by the instruction cache prior to
execution. start and end are the starting and ending addresses, respectively, of
the block of memory you modified to contain your instructions.

General Cache Flushing

Two APIs globally flush the CPU caches:

void flush_cache_all(void);

and

void flush_cache_mm(struct mm_struct *mm);

These flush all the caches in the system and only the lines in the cache
belonging to the particular process address space mm. Both of these are
extremely expensive operations and should be used only when absolutely
necessary.

Caching in SMP Environments

When more than one CPU is in the system, a level of caching usually exists that
is unique to each CPU. Depending on the architecture, it may be the
responsibility of the kernel to ensure that changes in the cache of one CPU
become visible to the other CPUs. Fortunately, most CPUs handle this type of
coherency problem in hardware. Even if they don't, as long as you follow the
APIs listed in this article, you can maintain coherency across all the CPUs.

Conclusion

I hope I've given you a brief overview of how caches work and how the kernel
manages them. The contents of this article should be sufficient for you to
understand caching in most kernel programming situations you're likely to
encounter. Be aware, however, that if you get deeply into the guts of kernel
cache management (particularly in the architecture-specific code), you likely will
come across concepts and APIs not discussed here.

James Bottomley is the software architect for SteelEye. He maintains the SCSI
subsystem, the Linux Voyager port and the 53c700 driver. He also has made
contributions to PA-RISC Linux development in the area of DMA/device model
abstraction.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/toc117.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Scaling dcache with RCU

Paul E. McKenney

Dipankar Sarma

Maneesh Soni

Issue #117, January 2004

Reorganizing the way Linux caches filename lookups is a big win for helping to
scale to large servers.

RCU (read-copy update), a synchronization technique optimized for read-mostly
data structures, recently was added to the Linux 2.6 kernel. This article
describes how RCU improved the scalability of Linux's directory-entry cache
(dcache). For some more background, see “Using RCU in the Linux 2.5 Kernel”,
in the October 2003 issue of Linux Journal.

 Linux Directory-Entry Cache

Linux's dcache maintains a partial in-memory image of the filesystem hierarchy.
This image enables pathname lookup without expensive disk transfers, greatly
increasing the performance of filesystem operations. To ease handling of
mount and unmount operations, the Linux kernel also maintains an image of
the mount tree in struct vfsmount structures.

If the Linux 2.4 dcache is so great, why change it? The difficulty with the 2.4
dcache is it uses the global dcache_lock. This lock is a source of cache line
bouncing on small systems and a scalability bottleneck on large systems, as
illustrated in Figure 1.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f1.large.jpg

Figure 1. Tux Doing His Duty

 Visual Overview of dcache

This section provides background for the RCU-related dcache changes, which
are described later in the article. Readers desiring more detail should dive into
the source code.

This section uses the example filesystem tree shown in Figure 2, which has two
mounted filesystems with roots r1 and r2, respectively. The second filesystem is
mounted on directory b, as indicated by the dashed arrow. The file g has not
been referenced recently and therefore is not present in dcache, as indicated
by its dashed blue box.

https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f2.large.jpg

Figure 2. Example Filesystem Tree

The dcache subsystem maintains several views of the filesystem trees. Figure 3
shows the directory structure representation. Each dentry representing a
directory maintains a doubly linked circular list headed by the d_subdirs field
that runs through the child dentries' d_child fields. Each child's d_parent
pointer references its parent. The mountpoint (dentry b) does not reference the
mounted filesystem directly. Instead, the mountpoint's d_mounted flag is set,
and dcache looks up the mounted filesystem in mount_hashtable, a process
that is described later.

https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f3.large.jpg

https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f3.large.jpg

Figure 3. dcache Representation of the Example Filesystem Tree

Although one could search the d_subdirs lists directly, this would be a slow
process for large directories. Instead, __d_lookup() hashes the parent
directory's dentry pointer and the child's name, searching the global
dentry_hashtable for the corresponding dentry. This hash table is shown in
Figure 4, along with the LRU list headed by dentry_unused. Any dentry in the
LRU list usually is in the hash table as well. Exceptions include cases where
parent directories time out, such as in distributed filesystems like NFS.

Figure 4. dentry Hash Table

https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f4.large.jpg

Each dentry references its inode using the d_inode pointer. This d_inode
pointer can be NULL for negative dentries, which lack an inode. Negative
dentries can be generated when a filesystem removes a dentry's file or when
someone tries to lock a non-existent file. Negative dentries can improve system
performance by failing repeated accesses to a given non-existent file without
having to invoke the underlying filesystem. Similarly, hard links result in
multiple dentries sharing an inode, as shown in Figure 5.

Figure 5. Hard-Link Alias Chains

Figure 6 shows a high-level dentry state diagram. The normal dentry's life goes
as follows:

1. d_alloc() allocates a new dentry for a newly referenced file, leading to state
New.

2. d_add() associates the new dentry with its name and inode, leading to
state Hashed.

3. When done with the file, d_put() adds the dentry to the LRU list and sets
its DCACHE_REFERENCED bit in its d_vfs_flags field, leading to state LRU
Ref (Hashed).

4. If the file is referenced again while in the LRU Ref (Hashed) state,
dget_locked(), usually called from d_lookup(), marks it in use. If it still is in
use at the next prune_dcache() invocation, it is removed from the LRU list,
leading again to state Hashed.

5. Otherwise, prune_dcache() eventually removes the DCACHE_REFERENCED
bit from the d_vfs_flags field, leading to state LRU (Hashed).

6. As before, if the file is referenced again, dget_locked() marks it in use so
that prune_dcache() can remove it from the LRU list, leading again to state
Hashed.

https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f5.large.jpg

7. Otherwise, the second consecutive call to prune_dcache() invokes d_free()
via prune_one_dentry(), resulting in state Dead.

Other paths through Figure 6 are possible. For example, if a distributed
filesystem converts a cached file handle into a new dentry, it invokes
d_alloc_anon() to allocate the dentry when the corresponding object's parent is
no longer represented in the dentry cache. Similarly, using d_delete() to delete
the file or directory underlying a given dentry would move that dentry to the
Negative state. On last close, it would be advanced to “Dead”.

https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f6.large.jpg

https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f6.large.jpg

Figure 6. dentry State Diagram

Figure 7 shows the mount_hashtable data structure used to map the
mountpoint dentry to the struct vfsmount of the mounted filesystem. This
mapping hashes the pointer to the mountpoint dentry and the pointer to the
struct vfsmount for the filesystem containing the mountpoint. This combination
of dentry pointer and struct vfsmount allows multiple mounts on the same
mountpoint to be handled more gracefully.

Figure 7. Traversing Mountpoints

The example filesystem layout shown in Figure 2 would result in struct
vfsmount structures as shown in Figure 8. The vfs1 structure references the
root dentry r1 both as the mnt_mountpoint and the mnt_root, because this
filesystem is the ultimate root of the filesystem tree. The vfs2 structure
references dentry b as its mnt_mountpoint and r2 as its mnt_root. Thus, when
the mount_hashtable lookup returns a pointer to vfs2, the mnt_root field
quickly locates the root of the mounted filesystem.

https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f8.large.jpg

Figure 8. VFS Mount Tree

The overall shape of the mounted filesystems is reflected in the mnt_mount/
mnt_child lists. These lists are used by functions such as copy_tree() while doing
loopback mount, which need to traverse all the filesystems mounted in a
particular subtree of the overall pathname namespace.

 Applying RCU to dcache

A full parallelization of dcache would be quite complex and was deemed too
risky for the latter part of the 2.5 effort. The 2.6 dcache is but one step along
the road to RCU; the goal for 2.7 is to walk the entire path without acquiring any
locks.

Listing 1. Lock-Free Pathname Segment Lookup

 1 struct dentry *

https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f8.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f8.large.jpg

 2 __d_lookup(struct dentry * parent,
 3 struct qstr * name)
 4 {
 5 unsigned int len = name->len;
 6 unsigned int hash = name->hash;
 7 const unsigned char *str = name->name;
 8 struct hlist_head *head = d_hash(parent,hash);
 9 struct dentry *found = NULL;
10 struct hlist_node *node;
11
12 rcu_read_lock();
13 hlist_for_each (node, head) {
14 struct dentry *dentry;
15 unsigned long move_count;
16 struct qstr * qstr;
17
18 smp_read_barrier_depends();
19 dentry = hlist_entry(node, struct dentry,
20 d_hash);
21 if (unlikely(dentry->d_bucket != head))
22 break;
23 move_count = dentry->d_move_count;
24 smp_rmb();
25 if (dentry->d_name.hash != hash)
26 continue;
27 if (dentry->d_parent != parent)
28 continue;
29 qstr = dentry->d_qstr;
30 smp_read_barrier_depends();
31 if (parent->d_op &&
32 parent->d_op->d_compare) {
33 if (parent->d_op->d_compare(parent, qstr,
34 name))
35 continue;
36 } else {
37 if (qstr->len != len)
38 continue;
39 if (memcmp(qstr->name, str, len))
40 continue;
41 }
42 spin_lock(&dentry->d_lock);
43 /*
44 * If dentry is moved, fail the lookup
45 */
46 if (likely(move_count ==
47 dentry->d_move_count)) {
48 if (!d_unhashed(dentry)) {
49 atomic_inc(&dentry->d_count);
50 found = dentry;
51 }
52 }
53 spin_unlock(&dentry->d_lock);
54 break;
55 }
56 rcu_read_unlock();
57 return found;
58 }

Pathname segment lookup is performed by the __d_lookup() function shown in
Listing 1. The __d_lookup() function is invoked with a pointer to the parent
directory's dentry and the name to be looked up. The name is passed in a struct
qstr, which contains a pointer to the string, its length, a precomputed hash
value for the dcache hash table and the name itself, if desired.

Lines 5–7 unmarshall the struct qstr. Line 8 hashes the combination of the
name and the parent dentry pointer into the global dcache hash table, yielding
a pointer to the corresponding hash chain.

Lines 12 and 56 demark the RCU-protected segment of the code, disabling
preemption in CONFIG_PREEMPT kernels, as specified by the Reader-Writer-
Lock/RCU analogy described in the article entitled “Using RCU in the Linux 2.5
Kernel” in the October 2003 issue of Linux Journal. Lines 13–55 loop through
the elements in the selected hash chain, looking for the matching dentry. Line
18 issues a memory barrier but only on DEC Alpha. On other CPUs, the data
dependency implied by the pointer dereference suffices, so on these CPUs, line
18 generates no code.

Because this lookup acquired no locks, it may be racing with a rename system
call. Such a system call could move a dentry to another hash chain, taking this
lookup with it. Lines 21 and 22 check for this race, but they are not sufficient in
and of themselves. Therefore, line 23 takes a snapshot of the number of times
that the current dentry has been subjected to a rename, the dcache d_move()
function, which is used later to determine if any renames raced with the path
walk. Line 24 is a memory barrier to ensure that the snapshot is not reordered
by either the compiler or the CPU.

Lines 25–28 check the name hash and the parent dentry. If either fail to match,
this dentry cannot be the target of our lookup. Lines 29–41 do the full name
comparison, with memory barrier for DEC Alpha at line 30. Filesystem-specific
name comparison functions may be provided, for example, for case-
independent filesystems, as shown on line 33.

If execution reaches line 42, we have found a child dentry with a matching
name. We then acquire the child dentry's lock on line 42. Because we have a
lock on each dentry, the level of contention on these individual locks is much
lower than on the original dcache_lock. Nonetheless, life is not perfect. For
example, the lock on the root dentry still is subject to contention, a topic
discussed later.

The child dentry possibly was renamed after the d_move_count snapshot was
acquired on line 23. Therefore, lines 46–47 check the current value of
d_move_count against the snapshot. If the check passes, the child dentry has
not been renamed out from under the lookup, and lines 48–51 increment a
reference count—but only if the entry still is hashed.

Line 53 releases the child dentry's lock, and line 54 breaks out of the hash-chain
search loop. Line 57 returns a pointer to the child dentry if the lookup was
successful, or NULL otherwise.

A failure of __d_lookup() does not mean that failure is returned to the user
process. The file actually may exist, but has not been loaded yet into dcache.

This function does not protect, however, against all rename-race hazards. One
additional race is caused by the fact that dcache uses hlist rather than list for
the dcache hash chains. It uses hlist to save memory, because hlist requires
one rather than two pointers in the list header. This does mean, though, that
hlist, unlike list, is not circular. It therefore is possible that a particular dentry
will be renamed such that it lands in a previously empty dcache hash chain. If
this happened at the right time, the __d_lookup() function could return search
failure incorrectly.

An incorrectly returned search failure is handled by the upper-level d_lookup()
function, shown in Listing 2. Any racing renames are detected by the
read_seqretry() function on line 13. As the problematic case results only in
spurious failure, the check is made only on NULL return from __d_lookup().

Listing 2. Pathname Segment Lookup Rename-Race Resolution

 1 struct dentry *
 2 d_lookup(struct dentry * parent,
 3 struct qstr * name)
 4 {
 5 struct dentry * dentry = NULL;
 6 unsigned long seq;
 7
 8 do {
 9 seq = read_seqbegin(&rename_lock);
10 dentry = __d_lookup(parent, name);
11 if (dentry)
12 break;
13 } while (read_seqretry(&rename_lock, seq));
14 return dentry;
15 }

 Deferred-Free

The d_free() function must defer freeing of a given dentry until a grace period
has elapsed, because any number of ongoing path walks might be holding
references to that dentry. Deferment is accomplished in the d_free() function
shown in Listing 3, where line 5 uses the call_rcu() primitive to defer the
destructive actions in the d_callback() function until after a grace period has
elapsed. The d_callback() function is shown in Listing 4; it simply frees large
names stored separately (lines 5–7), if appropriate, then frees the dentry itself
on line 8.

Listing 3. Deferred-Free of dentry Structures

1 static void d_free(struct dentry *dentry)
2 {
3 if (dentry->d_op && dentry->d_op->d_release)
4 dentry->d_op->d_release(dentry);
5 call_rcu(&dentry->d_rcu, d_callback, dentry);
6 }

Listing 4. RCU Callback Function for dentries

1 static void d_callback(void *arg)
2 {
3 struct dentry * dentry = (struct dentry *)arg;
4
5 if (dname_external(dentry)) {
6 kfree(dentry->d_qstr);
7 }
8 kmem_cache_free(dentry_cache, dentry);
9 }

 Rename

The d_move() function implements the dentry-specific portion of the rename
system call, as shown in Listing 5. Line 5 excludes any other tasks attempting to
update dcache, and line 6 permits d_lookup() to determine that it has raced
with a rename. Lines 7–13 acquire the per-dentry lock of the file being renamed
and its destination, ordered by address so as to avoid deadlock. Lines 14–17
remove the entry from its old location in the dcache hash table, if it has not
been so removed already.

Line 19 updates the dentry to point to its new hash bucket, lines 20–21 add the
dentry to its destination hash bucket and line 22 updates the flags to indicate
that the dentry is present in the dcache hash table. Line 24 removes the target
dentry—the one being rename()ed over—from the dcache hash table, and lines
25–26 divorce the moving and target dentries from their old parents.

Line 27 changes the dentry's name, and line 28 enforces write ordering. The
name change is nontrivial due to the fact that short names are stored in the
dentry itself, and longer names are stored in separately allocated memory.
Lines 29–32 update the name length and hash value. Lines 33–44 connect the
dentry to its new parent. Finally, line 45 updates the d_move_count so
__d_lookup() can detect races, and lines 46–49 release the locks.

In theory, a sustained succession of rename operations carefully designed to
leave dentries in the same directory and in the same hash chain could stall
indefinitely horribly unlucky lookups. One way this stall could happen is if the
lookup is searching for the last element in the hash chain and the second-to-
last element is renamed consistently (thus moved to the head of the list) just as
the lookup got to it. In practice, dcache hash chains are short and renames are
slow. If these stalls become a problem, though, it may be necessary to add code
to stall renames upon path-walk failure. Another approach being considered is
to eliminate the global hash table entirely in favor of modifying the d_subdirs
list so as to handle large directories gracefully.

Listing 5. Renaming dentries

 1 void
 2 d_move(struct dentry *dentry,
 3 struct dentry *target)
 4 {
 5 spin_lock(&dcache_lock);
 6 write_seqlock(&rename_lock);
 7 if (target < dentry) {
 8 spin_lock(&target->d_lock);
 9 spin_lock(&dentry->d_lock);
10 } else {
11 spin_lock(&dentry->d_lock);
12 spin_lock(&target->d_lock);
13 }
14 if (dentry->d_vfs_flags & DCACHE_UNHASHED)
15 goto already_unhashed;
16 if (dentry->d_bucket != target->d_bucket) {
17 hlist_del_rcu(&dentry->d_hash);
18 already_unhashed:
19 dentry->d_bucket = target->d_bucket;
20 hlist_add_head_rcu(&dentry->d_hash,
21 target->d_bucket);
22 dentry->d_vfs_flags &= ~DCACHE_UNHASHED;
23 }
24 __d_drop(target);
25 list_del(&dentry->d_child);
26 list_del(&target->d_child);
27 switch_names(dentry, target);
28 smp_wmb();
29 do_switch(dentry->d_name.len,
30 target->d_name.len);
31 do_switch(dentry->d_name.hash,
32 target->d_name.hash);
33 if (IS_ROOT(dentry)) {
34 dentry->d_parent = target->d_parent;
35 target->d_parent = target;
36 INIT_LIST_HEAD(&target->d_child);
37 } else {
38 do_switch(dentry->d_parent,
39 target->d_parent);
40 list_add(&target->d_child,
41 &target->d_parent->d_subdirs);
42 }
43 list_add(&dentry->d_child,
44 &dentry->d_parent->d_subdirs);
45 dentry->d_move_count++;
46 spin_unlock(&target->d_lock);
47 spin_unlock(&dentry->d_lock);
48 write_sequnlock(&rename_lock);
49 spin_unlock(&dcache_lock);
50 }

 Performance and Complexity Comparisons

Although this change in dcache was relatively small, it had far-reaching
consequences in the kernel, because a well-defined API for filesystems to
interact with dcache was not in place. This resulted in a large number of bugs in
the Linux 2.5 kernel due to filesystems hackers attempting to manipulate
dcache directly in the traditional style. Given that a somewhat more formal API
now exists, we hope future changes will be less traumatic.

Figure 9 shows the performance of a multiuser benchmark running on a Linux
2.5.59 kernel patched to use RCU in the directory-entry cache compared to the
performance of an unpatched kernel. These benchmarks were run on a 16-CPU
NUMA-Q system using 700MHz PIII Intel Xeons with 1MB L2 cache and 16GB of
memory.

Figure 9. Multiuser Benchmark Performance

Applying the dcache_rcu patch to a Linux 2.4.17 kernel increased SPECweb99
(without SSL) throughput from 2,258 to 2,530 on an 8-CPU PIII Xeon server, a
12% improvement. Applying the same patch to a Linux 2.5.40-mm2 kernel
reduced the system time consumed by a Linux kernel build from 47.548 CPU
seconds to 42.498 CPU seconds, more than a 10% reduction. A similar test run
on a uniprocessor 700MHz PIII Xeon system running the Linux 2.5.42 kernel
showed no change. In summary, dcache RCU not only increases scaling for
high-end machines, it also maintains good performance on low-end machines.

 Future Directions

Although the 2.6 dcache system is much more scalable than the 2.4 version
was, a number of issues still need to be investigated:

1. Updates still are gated by dcache_lock, which means that update-intensive
workloads do not scale well.

2. The global hash table defeats cache locality and makes update code more
complex than necessary. Of course, any alternative must preserve its
benefits, including high-performance handling of large directories.

3. The 2.6 dcache code acquires each dentry's d_lock spinlock, resulting in
cache-line bouncing and atomic operations, particularly on the root
directory and on working directories. Much thought is needed to arrive at
a simple solution, as moving permissions into the dentry turns out to be
quite complex.

4. The code that resolves races between __d_lookup() and d_move() is overly
complex.

We eagerly anticipate participating in the 2.7 effort to resolve these issues,
hopefully resulting in the situation shown in Figure 10.

https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f10.large.jpg

Figure 10. Tux's Duty in 2.7

 Legal Statement

This work represents the view of the author and does not necessarily represent
the view of IBM.

SPEC and the benchmark name SPECweb are registered trademarks of the
Standard Performance Evaluation Corporation. The benchmarking was done
for research purposes only and may not be compared to published results on
the SPECWeb site, due to the following deviations from the rules:

1. It was run on hardware that does not meet the SPEC availability-to-the-
public criteria. The machine was an engineering sample.

2. access_log was not kept for full accounting. It was being written but
deleted every 200 seconds.

For the latest SPECweb99 benchmark results, visit www.spec.org.

Paul E. McKenney is a distinguished engineer at IBM and has worked on SMP
and NUMA algorithms for longer than he cares to admit. Prior to that, he
worked on packet-radio and Internet protocols (but long before the Internet
became popular). His hobbies include running and the usual house-wife-and-
kids habit.

https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f10.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7124f10.large.jpg
http://www.spec.org

Dipankar Sarma currently is working on a number of Linux kernel projects,
including CPU hot-plug, RCU and VFS enhancements. Prior to his Linux days, he
worked on a number of areas including ABI, OS bringup, I/O drivers and
multipath I/O.

Maneesh Soni has been working with IBM's Linux Technology Center as a
member of Linux Scalability Effort Project. He has experience in the system
software arena, particularly with operating-system kernels and filesystems.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/toc117.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Signed Kernel Modules

Greg Kroah-Hartman

Issue #117, January 2004

Now you can make the kernel check modules for a cryptographic signature
before inserting them. Here's the detail of how it's done.

Signed kernel modules have been a feature of other operating systems for a
number of years. Some people and companies like the idea of installing only
modules (or drivers, as they are sometimes called) that are known to be
blessed by some authority in their operating systems. Given the changes in
how Linux loads kernel modules, signed kernel modules easily can be added to
the Linux kernel. This article discusses how I have implemented this feature
and details how to use it.

In a signed kernel module, someone has inserted a digital signature into the
module stating they trust this specific module. I am not going to try to persuade
anyone that Linux should have this ability, that it should be required or even
that it provides increased security. I describe only how to do it and provide the
method for its implementation, if anyone wants to use it.

Public key cryptography is used to make signed kernel modules work. For an
overview of the RSA public key cryptographic algorithm—what it is and how it
works—see the Linux Journal Web article at www.linuxjournal.com/article/6826.
This article assumes readers are familiar with the basics of public-key
cryptography and that they are able to patch, build and load a new Linux kernel
onto their machines. For instructions on how to build and load a new kernel,
see the very helpful Linux Kernel HOWTO located at www.tldp.org.

In the 2.5 kernel development series, Rusty Russell rewrote the way Linux
kernel modules work. In previous kernels, the majority of the module loading
logic was stored in user space. With Rusty's changes, all of that logic moved into
the kernel, reducing the amount of architecture-independent logic and
simplifying the user interface greatly. One nice side benefit of this is the kernel
now has access to the entire module file in raw form. The kernel module simply

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.linuxjournal.com/article/6826
http://www.tldp.org

is a file in ELF format. ELF stands for executable and linking format and is the
format used for executable programs. The ELF specification can be found in
text form at www.muppetlabs.com/~breadbox/software/ELF.txt.

ELF files are comprised of different sections. These sections can be seen by
running the readelf program. For example:

$ readelf -S visor.ko
There are 23 section headers, starting at offset 0x3954:

Section Headers:
 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al
 [0] NULL 00000000 000000 000000 00 0 0 0
 [1] .text PROGBITS 00000000 000040 0017e0 00 AX 0 0 16
 [2] .rel.text REL 00000000 003cec 000cd0 08 21 1 4
 [3] .init.text PROGBITS 00000000 001820 000210 00 AX 0 0 16
 [4] .rel.init.text REL 00000000 0049bc 0001c8 08 21 3 4
 [5] .exit.text PROGBITS 00000000 001a30 000030 00 AX 0 0 16
 [6] .rel.exit.text REL 00000000 004b84 000030 08 21 5 4
 [7] .rodata PROGBITS 00000000 001a60 000020 00 A 0 0 16
 [8] .rel.rodata REL 00000000 004bb4 000028 08 21 7 4
 [9] .rodata.str1.1 PROGBITS 00000000 001a80 000449 01 AMS 0 0 1
 [10] .rodata.str1.32 PROGBITS 00000000 001ee0 0009c0 01 AMS 0 0 32
 [11] .modinfo PROGBITS 00000000 0028a0 0006c0 00 A 0 0 32
 [12] .data PROGBITS 00000000 002f60 000600 00 WA 0 0 32
 [13] .rel.data REL 00000000 004bdc 0001e0 08 21 c 4
 [14] .gnu.linkonce.thi PROGBITS 00000000 003560 000120 00 WA 0 0 32
 [15] .rel.gnu.linkonce REL 00000000 004dbc 000010 08 21 e 4
 [16] __obsparm PROGBITS 00000000 003680 000180 00 WA 0 0 32
 [17] .bss NOBITS 00000000 003800 00000c 00 WA 0 0 4
 [18] .comment PROGBITS 00000000 003800 00006e 00 0 0 1
 [19] .note NOTE 00000000 00386e 000028 00 0 0 1
 [20] .shstrtab STRTAB 00000000 003896 0000bd 00 0 0 1
 [21] .symtab SYMTAB 00000000 004dcc 000760 10 22 58 4
 [22] .strtab STRTAB 00000000 00552c 000580 00 0 0 1

Because ELF files are made up of sections, it is easy to add a new section to the
module file and have the kernel read it into memory when it tries to load the
module. If we put an RSA-signed section into the module, the kernel can
decrypt the signature and compare it to the signature of the file it just loaded. If
it matches, the signature is valid and the module is inserted successfully into
the kernel's memory. If the signature does not match, either something has
been tampered with in the module or the module was not signed with a proper
key. The module then can be rejected—that is what my patch does.

How the Kernel Code Works

When the kernel is told to load a module, the code in the file kernel/module.c is
run. In that file, the function load_module does all of the work of breaking the

http://www.muppetlabs.com/~breadbox/software/ELF.txt

module into the proper sections, checking memory locations, checking symbols
and all the other tasks a linker generally does. The patch modifies this function
and adds the following lines of code:

if (module_check_sig(hdr, sechdrs, secstrings)) {
 err = -EPERM;
 goto free_hdr;
}

This new function, module_check_sig does all of the module signature-checking
logic. If it returns an error, the error Improper Permission is returned to
the user and module loading is aborted. If the function returns a 0, meaning no
error occurred, the module load procedure continues on successfully.

The module_check_sig function is located in the file kernel/module-sig.c. The
first thing the function does is check to see if a signature is located within the
module. This is done with the following lines of code:

sig_index = 0;
for (i = 1; i < hdr->e_shnum; i++)
 if (strcmp(secstrings+sechdrs[i].sh_name,
 "module_sig") == 0) {
 sig_index = i;
 break;
}
if (sig_index <= 0)
 return -EPERM;

This bit of code loops through all of the different ELF sections in the kernel
module and looks for one called module_sig. If it does not find the signature, it
returns an error and prevents this module from being loaded. If it does find the
signature, the function continues.

Once the kernel has found the module signature, it needs to determine what
the hash value is of the module it is being asked to load. To do this, it generates
the SHA1 hash of the ELF section that contains executable code or data used by
the kernel. The kernel already contains code to generate SHA1 hashes (along
with other kinds of hashes, including MD5 and MD4), so most of the logic for
this step is present already.

The function first allocates a crypto transformation structure by requesting the
SHA1 algorithm. It then initializes this structure with the following lines of code:

sha1_tfm = crypto_alloc_tfm("sha1", 0);
if (sha1_tfm == NULL)
 return -ENOMEM;
crypto_digest_init(sha1_tfm);

The sha1_tfm variable is used to create the SHA1 hash of the specific portions
of the ELF file that we want, as shown in the following code:

for (i = 1; i < hdr->e_shnum; i++) {
 name = secstrings+sechdrs[i].sh_name;

 /* We only care about sections with "text" or
 "data" in their names */
 if ((strstr(name, "text") == NULL) &&
 (strstr(name, "data") == NULL))
 continue;
 /* avoid the ".rel.*" sections too. */
 if (strstr(name, ".rel.") != NULL)
 continue;

 temp = (void *)sechdrs[i].sh_addr;
 size = sechdrs[i].sh_size;
 do {
 memset(&sg, 0x00, sizeof(*sg));
 sg.page = virt_to_page(temp);
 sg.offset = offset_in_page(temp);
 sg.length = min(size,
 (PAGE_SIZE - sg.offset));
 size -= sg.length;
 temp += sg.length;
 crypto_digest_update(sha1_tfm, &sg, 1);
 } while (size > 0);
}

In this code, we care only about the ELF sections with the word text or data in
their names but not ones that contain the characters .rel. After all of the
sections have been found and fed to the SHA1 algorithm, the SHA1 hash is
placed into the variable sha1_result with the following lines:

crypto_digest_final(sha1_tfm, sha1_result);
crypto_free_tfm(sha1_tfm);

Now that the SHA1 hash is computed and the place with the signed hash has
been found, all that is left to do is unencrypt the signed hash and compare it to
the calculated one. This step is done in the last line of this function:

return rsa_check_sig(sig, &sha1_result[0]);

The rsa_check_sig function is located in the security/rsa/rsa.c file and uses the
GnuPG code itself, which was ported to run in the kernel to unencrypt the
signature and compare the values. The description of how this works is beyond
the scope of this article.

How the User-Space Code Works

Now that we have seen how the kernel determines whether a module is signed
properly, how do we get a signature into a module in the first place? Two user-
space programs, extract_pkey and mod, and one small script, sign (in the

security/rsa/userspace/ directory), can be found in the kernel patch. The two
programs can be built by running the Makefile in this directory. The
extract_pkey program is used to place a public key into the kernel, and the mod
program is used by the sign script to sign a kernel module.

In order to sign a module, an RSA-signing key must be generated, which can be
done by using the gnupg program. To generate an RSA-signing key, pass the --
gen-key option to gpg:

$ gpg --gen-key
gpg (GnuPG) 1.2.1; Copyright (C) 2002 Free Software Foundation, Inc.
This program comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it
under certain conditions. See the file COPYING for details.

Please select what kind of key you want:
 (1) DSA and ElGamal (default)
 (2) DSA (sign only)
 (5) RSA (sign only)
Your selection?

We want to create an RSA key, so we select option 5 and then choose the
default key size of 1024:

Your selection? 5
What keysize do you want? (1024)
Requested keysize is 1024 bits

Continue answering the rest of the questions, and eventually your RSA key is
generated. But in order to use this key, we must create an encrypting version of
it. To do that, run gpg again and edit the key you just created (in the text below,
I have named my key testkey):

$ gpg --edit-key testkey
gpg (GnuPG) 1.2.1; Copyright (C) 2002 Free Software Foundation, Inc.
This program comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it
under certain conditions. See the file COPYING for details.

Secret key is available.

gpg: checking the trustdb
gpg: checking at depth 0 signed=0 ot(-/q/n/m/f/u)=0/0/0/0/0/1
pub 1024R/77540AE9 created: 2003-10-09 expires: never trust: u/u
(1). testkey

Command>

We want to add a new key, so type addkey at the prompt:

Command> addkey
Please select what kind of key you want:
 (2) DSA (sign only)
 (3) ElGamal (encrypt only)
 (5) RSA (sign only)
 (6) RSA (encrypt only)
Your selection?

Again, we want an RSA key, so choose option 6 and answer the rest of the
questions. After the key is generated, type quit at the prompt:

Command> quit
Save changes? yes

Now that we have a key, we can use it to sign a kernel module.

To sign a module, use the sign script, which is a simple shell script:

#!/bin/bash
module=$1
key=$2

strip out only the sections that we care about
./mod $module $module.out

sha1 the sections
sha1sum $module.out | awk "{print \$1}" > \
$module.sha1

encrypt the sections
gpg --no-greeting -e -o - -r $key $module.sha1 > \
$module.crypt

add the encrypted data to the module
objcopy --add-section module_sig=$module.crypt \
$module

remove the temporary files
rm $module.out $module.sha1 $module.crypt

The first thing the script does is run the program mod on the kernel module.
This program strips out only the sections that we care about in the ELF file and
outputs them to a temporary file. The mod program is described in more detail
later.

After we have an ELF file that contains only the sections we want, we generate a
SHA1 hash of the file using the sha1sum program. This SHA1 hash then is
encrypted using GPG, the key is passed to it and this encrypted file is written
out to a temporary file. The encrypted file is added to the original module as a
new ELF section with the name module-sig. This is done with the program

objcopy. And that is it. Using common programs already present on a Linux
machine, it is easy to create a SHA1 hash, encrypt it and add it to an ELF file.

The mod program also is quite simple. It takes advantage of the fact that the
libbfd library knows how to handle ELF files and manipulates them in different
ways; it is based on the binutils program objdump. Because the libbfd library
handles all of the heavy ELF logic, the mod program simply can iterate through
all the sections of the ELF file it wants to with the following code:

for (section = abfd->sections;
 section != NULL;
 section = section->next) {
 if (section->flags & SEC_HAS_CONTENTS) {
 if (bfd_section_size(abfd, section) == 0)
 continue;

 /* We only care about sections with "text"
 or "data" in their names */
 name = section->name;
 if ((strstr(name, "text") == NULL) &&
 (strstr(name, "data") == NULL))
 continue;

 size = bfd_section_size(abfd, section));
 data = (bfd_byte *)malloc(size);

 bfd_get_section_contents(abfd, section,
 (PTR)data,
 0, size);

 stop_offset = size / opb;

 for (addr_offset = 0;
 addr_offset < stop_offset;
 ++addr_offset) {
 fprintf(out, "%c", data[addr_offset]);
 }
 free(data);
 }
}

Now that we can sign a kernel module and the kernel knows how to detect this
signature, the only remaining piece is to put our public key into the kernel so it
can decrypt the signature successfully. A lot of discussion on the linux-kernel
mailing list recently has centered on how to handle keys within the kernel
properly. That discussion has produced some good proposals for how this
aspect will be handled in the 2.7 kernel series. But for now, we do not worry
about properly handling keys in flexible ways, so we compile it in directly.

First we need to get a copy of our public key. To do this, tell GPG to extract the
key to a file called public_key:

$ gpg --export -o public_key

To help manipulate GPG public keys, some developers at Ericsson created a
simple program called extract_pkey to help dissect the keys into their different
pieces. I have modified that program to generate C code for the public key.

Run the extract_pkey program and point it at the public_key file you generated
previously. Have it send the output to a file called rsa_key.c:

$ extract_pkey public_key > rsa_key.c

After this step is finished, move that rsa_key.c on top of the file in the security/
rsa/ directory, replacing my public key with yours:

$ mv rsa_key.c ~/linux/linux-2.6/security/rsa/

Now you have generated a public and private RSA key pair and placed your
public key into the kernel directory. Build the patched kernel, making sure to
select the Module signature checking option, and then install it. If you boot in to
this kernel, you will be allowed to load only the modules you have signed with
your key, so be careful and test this only on a development machine.

What Is Left to Do?

As shown in this article, a number of different steps are required to generate a
key, sign a kernel module and place the public key into the kernel image. This
still is a rough development project. In order to make it more acceptable to the
kernel developers and to the Linux community in general, these steps need to
be automated, making it easier to sign all kernel modules and handle the public
key.

Besides the obvious need to simplify the use of this feature, some other future
goals of this project include:

• Move the RSA code into the generic crypto framework, allowing other
kernel features to use it.

• Allow more than one public key to be present in the kernel, letting
multiple sources of signed kernel modules run in a single machine.

• Simplify the signing logic to allow GPG's native signing functionality or
possibly the functionality provided in the bsign program to be used,
instead of the custom mod program.

Acknowledgements

I would like to thank the developers at Ericsson, who have created a kernel
patch and program called digsig, for allowing me to use their port of GPG to the
kernel. I previously had done this, but the implementation was horrible;

thankfully, they released their port and were very helpful. The digsig kernel
patch allows users to sign programs and prevents the kernel from running any
program not signed. More information about this project can be found at
sourceforge.net/projects/disec.

I also would like to thank my employer, IBM, for allowing me to work on this
project, and Don Marti, for prodding me to finish it and write this article.

Greg Kroah-Hartman currently is the Linux kernel maintainer for a variety of
different driver subsystems. He works for IBM, doing Linux kernel-related
things, and can be reached at greg@kroah.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://sourceforge.net/projects/disec
mailto:greg@kroah.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/toc117.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Testing Applications with Xnee

Henrik Sandklef

Issue #117, January 2004

Is your clicking finger sore from testing your GUI program? Script your
regression tests with Xnee.

Xnee can record user actions during a session and then replay those actions. By
recording sessions when testing a program, Xnee automatically can test the
program for you later. These test sessions can be replayed before every
release, or every night, to ensure the quality of your program. Is it as easy as it
sounds? Almost.

Xnee doesn't test only GUIs. You also can use Xnee to test command-line
programs by making a few test scripts that test all the options of a command-
line program and analyze the results. Xnee also has been used to test how
much traffic is being sent over a large network with numerous thin clients.
Support for distributing events to multiple displays has been added if you want
to test the same cases on multiple machines at the same time. Besides testing
programs, Xnee also is used to demonstrate programs. In this case, Xnee acts
as a patient demonstrator, doing the same job over and over again without
complaining.

 The History of Xnee

In 1997, Henric Johansson and I wrote our master's thesis on recording and
replaying X events. We implemented a nonfree recorder and replayer for a
Swedish company for its internal purposes. After finding a job, I often lacked a
free test program for X11, so I decided to implement one on my own, using the
experience gained from the thesis. The Xnee Project started in the summer of
1999 and was licensed under GPL from the start. In November 2002, version
1.0 was released, and by the end of February 2003, Xnee was dubbed a GNU
package.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Introduction

Before we go on with Xnee, this short introduction to X explains a lot of the
terms used in this article. X is a window-based user interface system for various
platforms. The X server is a program that handles all the hardware and actually
does the drawing on the screen. On GNU/Linux systems, XFree86 is the most-
used X server. X programs are known as clients; examples are xterm and
Galeon. The clients communicate with an X server using the X protocol.

In this article we concentrate on the packets used to send information between
the X server and its clients. These packets are called Event, Request, Reply and
Error and are referred to here as protocol data. The following list shows the X11
protocol data description:

• Request is sent by the client to the server. The server is asked to perform
some action or to send some information.

• Reply is sent by the server to the client as a response to some request
from the client. Not all requests result in a reply.

• Event is sent by the server to the client to inform the client of user input
or that something has happened that the client may want to do
something about, for example, the client is out of focus.

• Error is sent by the server to the client if a request wasn't valid.

The most interesting thing here is every time the user interacts with the
computer using the mouse or the keyboard the X server sends the appropriate
client one or more events. Some of these events result directly from user input.
These events are referred to as device events. The device events are
ButtonPress, ButtonRelease, MotionNotify, KeyPress and KeyRelease. If we
could record all of these events during a session, we would have a complete
description of all the actions the user performed. If we had a robot that could
read these events if they were printed to a file or on paper, the robot then
could interact with the system as the user did when recording, and we would
have ourselves a test robot. Or, even better, if we had support for faking those
events, we would have a test robot made of software. Fortunately, support
exists for both recording and replaying in X.

To record X protocol data we can use the extensions RECORD or XTrap. There
are other ways to accomplish recording, such as sniffing the X socket, but we'll
focus on RECORD as it's what Xnee uses. To replay events, we can use both the
XTest extension and the RECORD extension. During replay, the RECORD
extension is used to synchronize what's happening when replaying with what
happened when the session was recorded.

The RECORD extension sends copies of the data sent between the clients and
the server to the client requesting it. Using the RECORD extension, Xnee can
record all protocol data the user wants and save it to a file to replay later.

The XTest extension can reproduce or fake all device events. This extension lets
Xnee fake user actions, such as moving the pointer, pressing and releasing a
key or pressing and releasing a button. No other data can be replayed.

 Xnee Installation

Xnee is a GNU package, and the sources can be found at the Xnee home page.
Download the latest source; as of this writing, the latest version is 1.0.6. Extract
the package, and then configure, build and install it:

tar zxvf xnee-1.0.6.tar.gz
cd xnee-1.0.6
./configure
make
make install

RPM packages are available at the home page, and Xnee also is available in the
FreeBSD ports tree. Xnee comes with a user manual and a developer manual in
various formats. The TeX sources to the manuals are distributed with Xnee and
covered under GNU FDL. Instead of building the documents yourself, you can
download the format of your choice (PDF, HTML, INFO and TXT) from the Xnee
home page. As of this writing, the Xnee documentation version is 1.0.4. Extract
the documents:

tar zxvf xnee-doc-1.0.4.tar.gz

When running Xnee, make sure the RECORD extension is enabled. On XFree86
make sure the RECORD module is loaded. Open the XFree86 configuration file,
typically /etc/X11/XF86Config-4, and look in the Module section. The following
line should be included:

Load "record"

See the Xnee FAQ for more information about this.

 Simple Usage Examples

We don't go into any details about Xnee in this section, but rather begin slowly
with a simple example. Start Xnee with the --all-events option. This sets up the
recording of a few events. The option is not useful when doing serious Xneeing.
It is intended to simplify your introduction to using Xnee:

xnee --all-events

When moving the mouse or pressing the buttons or keys, Xnee prints
information about the action. We move on to record a simple session that we
replay immediately. To record 20 mouse motions, start Xnee like this:

xnee --record --out session1.xnr \
--device-event-range MotionNotify --loops 20

The options on the command line mean use recording mode (--record), save
output in a file called session1.xnr (--out session1.xnr), record the device-event
MotionNotify (--device-event-range MotionNotify) and record 20 events (--loops
20).

To replay this event, start Xnee like this:

xnee --replay --file session1.xnr

The options on the command line mean use replay mode (--replay), and read
data to replay from file session1.xnr (--file session1.xnr).

 Setting Up Recording Ranges

Xnee uses ranges to explain what is to be recorded. Ranges have a start value
and a stop value. The following data can be recorded: core-requests, device-
event, delivered-event, error, reply, extension requests and extension replies.
We don't describe the above data in this article. If you want to read more, see
the RECORD extension documents. When, for example, you want to record the
device event MotionNotify, use:

--device-event-range MotionNotify

To record the events from KeyPress up to MotionNotify and CreateNotify, use:

--device-event-range KeyPress-MotionNotify,\
CreateNotify

You can use the number corresponding to the event name instead of the name
itself if you want shorter command lines. To find the number for the data you
want to record, use Xnee's --print-data-name option:

xnee --print-data-name

 Stopping Xnee

You can stop recording by setting the number of the data to record (--loops
option), or you can interrupt Xnee by sending a TERM signal (pressing Ctrl-C in
the terminal window where you started Xnee). Alternatively, you can dedicate a

modifier and key combination that won't be used to do anything else during
recording. Setting the modifier and key is done with the --stop-key option. To
set up Xnee so it stops recording when Ctrl-Alt-A are pressed, add the following
to the command-line option:

--stop-key Control+Alt,a

 Synchronize

But why even bother to record data other than device events when you can't
replay it? Xnee uses that other data to synchronize, which is where things get
complicated. Think of recording a session when using Galeon or any other Web
browser. When recording, everything goes well and the network is up and
running. But when replaying the Galeon session, you can't reach the Internet. If
not for synchronization, Xnee might replay user events such as clicking on a link
on the Web page. If Galeon could not load the page, it is not useful to continue
the replay until the network is up and the page can be loaded.

When recording other data, we can use it to synchronize the session. For
example, if we record the data sent when displaying the Web page in the
Galeon window, we can wait for the same data to be sent when replaying. This
ensures that the Web page is loaded before we go on and replay the coming
events. In this example, we skip a lot of the X protocol data sent when
recording in order to keep it simple (see Table 1). When replaying this simple
session, Xnee uses the same events (see Table 2).

Table 1. X Events at the Start of a Galeon Test

Protocol Data

Name
User or Client Action

MotionNotify
The user moves the pointer to the Galeon launch

icon.

ButtonPress The user presses the button and Galeon starts.

CreateNotify Galeon is started and the window is created.

VisibilityNotify The start page is loaded and visible to the user.

MotionNotify
The user moves the pointer to a link on the loaded

page.

ButtonPress The user clicks on the link.

VisibilityNotify The new page is loaded and visible to the user.

Table 2. How Xnee Replays a Test Session

 What to Synchronize

Although synchronization is needed, finding the right data to use for
synchronization may be difficult. Xnee solves this with plugin files that specify
what should be recorded for a range of applications. These plugins are named
after the applications they are intended to test. If you want to test a browser
you've written, it would be a good idea to use the Galeon plugin. Sometimes,
though, no plugins are suitable for your program, and you need to find the
right protocol data to synchronize. The following example hopefully makes it
easier for you in the future. We chose gnumeric as a program for which the
right options need to be found. First, launch gnumeric. Then start Xnee in a
terminal emulator with the following options:

xnee --delivered-event-range \
EnterNotify-MappingNotify --human-printout \
--loops 1000

This generates a lot of useless events that fill the screen, so stop Xnee. Filter out
those useless events by excluding them when setting ranges:

xnee --delivered-event-range \
EnterNotify-KeymapNotify,VisibilityNotify- \
MappingNotify --human-printout --loops -1

Protocol Data

Name
Xnee Action

MotionNotify Xnee moves the pointer to the Galeon launch icon.

ButtonPress Xnee presses the button and Galeon starts.

CreateNotify
Xnee waits for this event to be sent. When Xnee receives
a CreateNotify notice, it continues with the next event in

the file.

VisibilityNotify

Xnee waits for this event to be sent. Because the
network is down and the page can't be loaded, this

event isn't sent. Xnee continues to wait. Eventually the
event is sent and Xnee can continue.

MotionNotify Xnee moves the pointer to a link on the loaded page.

ButtonPress Xnee clicks on this link.

VisibilityNotify The new page is loaded and visible.

This looks better. Now, start recording a session with Xnee with the following
options:

@cx:xnee --delivered-event-range \
EnterNotify-KeymapNotify, \
VisibilityNotify-CirculateRequest, \
SelectionClear-MappingNotify --loops \
1000 --out session1.xnr

Type some stuff into the gnumeric spreadsheet and use the menus to insert
today's date or other input. When you're done, go to the terminal and press
Ctrl-C to stop recording. It is now time to replay your session. Set gnumeric in
the same state it was in when you recorded. Launch Xnee in replay mode like
this:

xnee --replay -f session1.xnr

Xnee sometimes pauses when replaying the session. This happens if the
protocol data isn't sent in the same order as it was recorded. Xnee pauses
execution for a while in order to wait for the expected data (as read from file) to
be sent by the server. Eventually, a timeout expires and Xnee tries to continue.
If Xnee can't synchronize between the recorded data traffic and the data traffic
as sent when replaying, it bails out.

Xnee supports giving record options through plugins. When you have found the
settings for your applications, save them in a plugin file. The syntax of a plugin
file is similar to the command-line options. The easiest way to crate a new
plugin is to copy an old one, fill in your settings and then rename it to some
appropriate name. Xnee is distributed with plugins for different clients. If you
want to send a plugin file for your application to Xnee, please do. The Xnee
home page has instructions for how to contribute.

If you have a program that creates windows for user feedback, you have to
make sure these windows pop up at the same location. Xnee records all device
events with coordinates referring to the root window, not the window that was
created.

To ease recording, make scripts that start Xnee with the right settings for a
specific purpose. You can add a launcher to your panel or add a menu item to
your window manager menu.

 Conclusion

Xnee has seen a lot of activity lately, mainly due to feedback from Xnee users.
We hope you consider Xnee for your project. Happy testing and happy hacking.

Resources

GNU: www.gnu.org

Kenton Lee: www.rahul.net/kenton/xsites.html

XFree86: www.xfree86.org

Xnee: www.gnu.org/software/xnee/www/index.html

Henrik Sandklef lives in Gothenburg (Sweden) with his wife and daughters. He
spends most of his time awake with his family, cooking, hacking and evaluating
GNU software, and occasionally, he tries to play football. You can reach him at
hesa@gnu.org.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.gnu.org
http://www.rahul.net/kenton/xsites.html
http://www.xfree86.org
http://www.gnu.org/software/xnee/www/index.html
mailto:hesa@gnu.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/toc117.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Linux, Talon and Astronomy

Tony Steidler-Dennison

Issue #117, January 2004

A new open-source application lets professional and amateur astronomers
explore space from their desktops.

We've been fascinated by astronomy since the ancient Chinese first charted the
skies. The computerization of astronomy, some would argue, is its greatest leap
forward yet. Today, unattended robotic telescopes scan skies that have been
charted over centuries, recording their findings in modern databases. CCD
cameras capture images impossible to define on film. It's an exciting time to be
an astronomer, whether amateur or professional.

The revolution in astronomy doesn't stop at the hardware. Research-grade
telescopes in observatories from Spain to Korea are under the control of open-
source software and Linux-based computers. Under the open-source model,
scientists are free to modify the control software, creating a trickle-down effect
that benefits amateurs. Open source and Linux even have changed the
scientific method. With source code freely available, peer review now occurs
not only on the data, but on the data gathering methods as well.

At the forefront of this open-source astronomy revolution is Talon. Talon was
originally developed by Ellwood Downey as the Observatory Control and
Astronomical Analysis Software (OCAAS). In 2001, the software was purchased
by Torus Technologies of Iowa City, Iowa. In late 2002, Torus was purchased by
Optical Mechanics, Inc., and the updated OCAAS package was released as Talon
under the GPL.

During the past two years, I've had the daily pleasure of working with Talon. I've
installed and configured the software on multiple telescope packages, and I've
followed these telescopes to destinations around the world for installation and
on-site configuration. It's my pleasure to share with you some of the broad
points of Talon installation, configuration and use.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Talon can be downloaded at observatory.sourceforge.net. The software
interacts with integrated motion control boards, available from Optical
Mechanics, Inc. (Optical Mechanics Motion Controllers) or Oregon
Microsystems (PC39 Motion Controllers). Object acquisition and tracking,
scheduled operations, environmental monitoring, dome control, image analysis
and processing all fall under the control of Talon. Networked operations also
are possible using a remote X session.

 Using Talon

The Talon package contains a full installation script; install.sh creates a talon
user, compiles the binaries and creates a set of text configuration files for initial
operation of the telescope.

Talon contains a full compliment of astronomy applications designed
specifically for use as a suite of tools. The main Talon interface utilizes the Motif
toolset, producing a familiar and unified look and feel throughout the
application set. Although the toolset is rich, the following four tools should be
of use to most observers.

xobs is the main Talon control window and is launched with the terminal
command startTel. It contains all the monitoring and calibration tools
necessary for operation. This window provides manual control of the telescope
and any attached peripherals, such as a filter wheel or dome control. It also
provides a constant display of the current position of the telescope, as
calculated by feedback from the motor encoders. This feedback is provided in a
set of text boxes within the xobs window.

http://observatory.sourceforge.net
https://secure2.linuxjournal.com/ljarchive/LJ/117/6673f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/6673f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/6673f1.large.jpg

Figure 1. xobs, the Main Talon Control Screen

When using Talon, the first important task is to find the home position of the
various encoders located throughout the system. These encoders close the
loop on the operation of the axes, providing a static count for the full travel of
each axis. Movement of the telescope is calculated in part by the motion of the
chosen axis in relation to the zero position on the encoder. Decrementing the
Declination encoder, for example, generally moves the telescope to the north.
The operation to find homes in the xobs window hunts for and establishes the
zero positions on each axis encoder.

Using the software paddle command in the xobs window (Figure 2), the user
can position the telescope, filter wheel and focus position manually. The
motion of the telescope to the east and west is referred to as the right
ascension (RA) or hour angle (HA) of the telescope. To travel north and south is
referred to as Declination (Dec). Using positive and negative encoder counts,
moving the telescope axes is a simple matter of moving the axis positive or
negative x (RA) or y (Dec). These coordinates are in relation to the North Pole.

Figure 2. The Talon Software Paddle, Used to Move the Telescope Manually

Additionally, Talon provides data on the weather conditions at the observing
site with an attached Davis weather station. This feature ensures that the
telescope is not exposed to adverse weather conditions during unattended
operations. When conditions fall within a predetermined range, the
observatory dome or roll-off roof closes, the telescope moves to a stowed
position and operations cease. As with the position data, this information is
provided in text boxes within the xobs interface.

Finally, xobs provides a search function that allows the user to enter the name
of a celestial object, search an internal database and automatically slew the
telescope into position to observe and photograph the requested object.

telsched is the element of Talon that makes robotic unattended observing
sessions possible. This can be a critical function for institutions conducting

research from remote locations or those requiring repeated observations of
particular objects over a given period of time.

Figure 3. Telsched, the Talon Operations Scheduling Program

The telsched command opens a scheduler for these unattended observing
sessions. The scheduler automatically calculates images to be taken during the
session based on the size (in degrees) of the chunk of sky the user selects. In
general, the tighter the area of the sky (fewer degrees), the more images taken.
Images taken by telsched during an unattended session are stored in a
directory of the user's choice. All instructions created by the telsched program
are stored in a flat file. These instructions are referenced by xobs when the
telescope is slaved off to robotic control from the xobs interface.

Camera is another terminal-launched application in the Talon suite. It provides
complete control over the functions of a CCD camera attached to the telescope.

https://secure2.linuxjournal.com/ljarchive/LJ/117/6673f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/6673f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/6673f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/6673f4.large.jpg

Figure 4. Camera, the Talon Image Processing Application

The camera application includes tools for exposure time, image size, software
image filtering and image analysis. Camera also contains tools for adjusting the
brightness and contrast of images, determining the area of interest (AOI) of the
image and automatically labeling objects by comparison to the World
Coordinates System (WCS). The latter tool is, in fact, a pattern-matching
algorithm that allows the system to compare known patterns of objects to the
WCS database.

xephem provides a software ephemeris, or sky charting interface, for the rest
of the Talon suite. As with other ephemerides, it relies heavily on correct
geographical and time coordinates; this information can be configured
manually by the user. xephem also can be configured to poll an attached GPS
at regular intervals, adjusting the system time to account for internal clock drift.

https://secure2.linuxjournal.com/ljarchive/LJ/117/6673f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/6673f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/6673f5.large.jpg

Figure 5. xephem, the Ephemeris Program for Talon

The xephem program, launched from the command line with xephem,
provides a granular view of the current sky. Data on each object is provided in a
right-click pop-up screen. The user also can point the telescope using this pop-
up, a feature used extensively for calibration. Magnification can be increased,
effectively looking deeper and deeper into the sky. As an alternative to
zooming, the user may select a minimum magnitude (apparent brightness)
threshold. This allows brighter stars to be filtered in the ephemeris view,
leaving only the dimmer objects in the window. The sky view also may be
rotated, and object type filtering is provided. For example, globular clusters can
be selected, eliminating the view of all other object types.

 Configuration

Configuration files are critical to the operation of Talon. They provide the
means by which the software communicates with both the user and the
hardware installed in the telescope. In the Linux tradition, these files are simple
text files, commented heavily for the clarification of the user. The configuration

https://secure2.linuxjournal.com/ljarchive/LJ/117/6673f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/6673f5.large.jpg

files for all elements of Talon can be found in /usr/local/telescope/archive/
config. Using the default tcsh shell, the simple command cd config moves
the user into the configuration directory.

The operation of the telescope can be viewed as two discrete elements, each of
which is addressed by a specific configuration file type. First, the internal
motion control boards must communicate with the motors and encoders.
Configuration files intended to serve this function utilize a .cmc extension. I've
always viewed this extension as delineating files that configure motion
controllers, cmc for short. The .cmc files establish the operating parameters for
the controller boards, which, in turn, send signals to and receive feedback from
the encoders and electromechanical components.

The other element of telescope operation is the interface between the user and
the software. In simple terms, all user-controlled operations utilize
configuration files with a more traditional .cfg extension. Whereas the .cmc files
operate behind the scenes to communicate directly with the hardware, the user
interface must communicate with the .cfg files.

 Critical Configuration Files

Although every configuration file plays a role in the operation of Talon, some in
both the .cmc class and the .cfg class bear special attention. These .cmc files
include:

• basic.cmc: establishes the basic communication between the motion
control boards and the motors driving the telescope axes.

• find.cmc: establishes the routines for finding objects based on encoder
counts.

• nodeDec.cmc: establishes the hardware parameters for the Dec axis of
the telescope.

• nodeRA.cmc: establishes the hardware parameters for the RA axis of the
telescope.

• nodeFocus.cmc: establishes the hardware parameters for the telescope
focus control.

The .cfg files are:

• boot.cfg: allows the user to script Talon startup routines. These may
include starting GPS monitoring, weather station monitoring and opening
the Talon main interface when the computer boots.

• home.cfg: provides an initial set of constants to allow the telescope to find
the home position of each encoder. These constants represent a spatial
sense for the telescope prior to working through the initial calibration

routines. Once these routines are completed, the actual encoder counts
and axis travel are updated automatically.

• telescoped.cfg: provides constants regarding the telescope axes,
establishes the position of physical travel limit switches in relation to the
encoders and establishes the maximum rotational velocity of each axis as
well as the rotational acceleration rates.

 Critical Configuration Settings

The settings in each of the individual .cmc and .cfg files utilize a naming
convention that makes their function easily recognizable, but some critical
settings within these files deserve special attention. These settings can be
modified with any familiar text editor:

• boot.cfg: establishes the overall parameters of the Talon software at boot.
• setTelUser: creates the telescope user, the telescope user group and sets

the appropriate permissions. By default, the initial telescope user and
group are named talon. This can be changed for subsequent use by
modifying the setTelUser constant in boot.cfg, provided the new user and
group already exist on the system.

• setTelDaemons: initializes the telescope dæmon (telescoped), camera
dæmon (camerad), weather station dæmon (wxd) and global positioning
system dæmon (gpsd).

• home.cfg: provides the following four constants for encoder counts, home
position, limit switches and rotational velocity and acceleration:

• HSTEP: the number of encoder counts in the full rotation of the HA axis
encoder.

• DSTEP: the number of encoder counts in the full rotation of the Dec axis
encoder.

• HSIGN: the physical location of the HA encoder on the telescope. When
viewed from the north, the HA encoder will increment clockwise if placed
at the back of the polar shaft (the shaft upon which the telescope moves
from east to west) or decrement when placed at the front. Another way to
view this is, if the marked encoder surface points to the south in the final
telescope configuration, it will increment when rotating clockwise. If it
points to the north, the encoder will decrement with clockwise rotation.
This configuration is a simple constant: 1 if the encoder increments, -1 if it
decrements.

• DSIGN: the physical location of the Dec encoder on the telescope. Much
like the HA encoder, the increment/decrement of the encoder varies
depending on the method used to mount the encoder. If the encoder is
installed with the encoded surface toward the outside of the fork, it
decrements when rotated clockwise, or toward the north. This requires a

setting of 1. If the encoder is mounted with the encoded surface to the
inside of the fork, it increments when rotated clockwise. This requires a
setting of -1.

• telescoped.cfg: provides the following constants for initial operation:
• HAXIS: the telescope network node from which the HA axis is controlled.
• DAXIS: the telescope network node from which the Dec axis is controlled.
• HESTEP: the raw encoder counts per revolution for the HA axis.
• DESTEP: the raw encoder counts per revolution for the Dec axis.
• HMAXVEL: the maximum slewing velocity of the HA axis.
• DMAXVEL: the maximum slewing velocity of the Dec axis.
• HMAXACC: the maximum slewing acceleration of the HA axis.
• DMAXACC: the maximum slewing acceleration of the Dec axis.

 Using Talon

Putting Talon to use requires a few initial calibration items. As with any
telescope, you'll need to check and adjust the polar alignment—the physical
location of the telescope in relation to celestial north.

With xobs in the boot.cfg script, the main Talon screen should open right after
your desktop loads. From this main screen, select Find Homes (Figure 6). As
noted, this routine finds the home mark on each encoder, RA, HA and Focus.
From the pop-up window, select All. The telescope should move in all axes.
Each axis skips past the home mark initially, backing up incrementally until it
finds the mark again. This reduction of each move to the home mark ensures
that the telescope ends up precisely on the mark.

Figure 6. Finding Home

The next step is to find limits. This routine locates the telescope's physical limit
switches, which prevent the telescope from damaging itself by swinging too far
through the travel of each axis. When the switches at both ends of travel are
found in an axis, the software writes the location (in encoder counts) to the
home.cfg file. You should need to complete the find limits routine only one
time.

With the telescope calibrated and aligned, it's time to take some pictures. Open
the camera and xephem applications from the command line. Enable telescope
control in the xephem options. Select an object by right-clicking in the
ephemeris, then select Point Telescope from the resulting pop-up. The
telescope should slew to the new position. Click on the camera application and
select Take One. With the proper connection to the camera, you'll hear the
shutter trip. Within a few seconds, an image of the selected object renders on
your screen.

To set up scheduled operations, use the telsched command. In the resulting
window, select the size of the mesh, remembering that the tighter the mesh is,
the more images taken. Set the time for the operations to start (in UT) and save
the schedule file in the default directory. Then pop back out to the main Talon
screen and select batch mode. You'll receive a confirmation window. When you
select Yes, the Talon application slaves to auto mode. You can cancel auto
mode from the main screen. You cannot, however, operate the telescope
manually from the main screen while batch mode is in use.

The Talon program is rich with features, providing complete control over the
operation of the telescope. Many of the finer features are outlined in the .pdf
manual provided in the Talon .tgz file. It's worth a thorough read to understand
the telescope interfaces to the control boards and to the software. The manual
also contains in-depth information on image processing, solving for WCS
solutions, automated and remote operations and finer calibration items that
are beyond the scope of this article.

Talon represents a complete leap into the open-source world for astronomers,
both professional and amateur. With the robust and networkable nature of
Linux, Talon provides a stable platform from which we can do what we've been
doing since the beginning of time—viewing, recording and discovering the
heavens.

Tony Steidler-Dennison is the director of operations for Optical Mechanics, Inc.,
and the author of Lockergnome's Penguin Shell newsletter, a twice-weekly
tome for Linux users. He maintains Talon on Sourceforge.net and the poli-tech
blog “Frankly, I'd Rather Not” at www.steidler.net. He answers all e-mail sent to
tony@steidler.net.

http://www.steidler.net
mailto:tony@steidler.net

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/toc117.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Controlling Devices with Relays

Jason Ellison

Issue #117, January 2004

Ring bells and more with a simple C program and inexpensive hardware.

I recently was given the curious task of making noise on a factory floor at set
intervals. The company wanted to use this noise to provide important auditory
cues for specific events. These events included the time employees should
clock in, clock out, take a break and return from break. The solution I
implemented has been working well, and everyone involved has been pleased
with the results. The gratitude I receive from employees that clock in and clock
out is related directly to the inaccuracy of their own personal timepiece—those
with fast watches appreciate the apparent extra time they have before clocking
in. Later, though, they curse me for being delayed in clocking out when the
watches on their wrists clearly show it is time to go.

The company I work for uses barcode clock terminals placed throughout the
plant to record the time that employees clock in and clock out. In addition, the
barcode clocks also record what job each individual employee is performing.
When an employee clocks in or out, the employee scans his or her identification
badge and a barcode representing the job the person is doing. The clock
terminal copies this data to a buffer, along with a timestamp of when the items
were scanned. CMINet, a data collection system running on two Microsoft
Windows NT systems, is used to acquire the data from the clocks. The clocks
are polled every minute or so to retrieve the data held in the clock terminal's
buffer. During polling, the clocks also are set to the local time of the machine
polling the clocks. The data acquired from the clocks is later imported into the
enterprise resource planning (ERP) system for job costing and payroll.

The company's policy on tardiness states, “employees will be considered tardy
if they clock in one minute or more after their assigned start time.” Due to the
company policy concerning tardiness, the event bells needed to be
synchronized perfectly with the barcode clocks and the machines running
CMINet. This synchronization would, in theory, alleviate the discrepancies

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

between the recorded clock-in time, recorded clock-out times and the true local
time. Correct time synchronization is key, but it is not discussed thoroughly in
this article.

Considering the one-minute-or-more-late-equals-tardy rule and the fact that
employees invariably become time-challenged when returning from break, it
was decided that scheduled bell soundings would be useful. Therefore, a
mission-critical noise-making system was needed, and I was given the task of
implementing it.

 Implementation Concepts

Based on the issues at hand, this project had to meet the following
requirements:

1. Provide auditory cues using a bell system. The bells need to be audible
and annoying enough to be noticed even after prolonged exposure.

2. Provide a simple way of closing an electrical circuit over a computer.
3. Provide accurate time synchronization for all time-sensitive systems,

including the machine that would trigger the bells, the machines running
CMINet and, indirectly, the barcode clocks.

With the requirements defined I began to formulate a plan. Five new 12VAC
bells and a 12VAC power supply were purchased. These are the same type of
bells commonly used in alarm systems or any sounding system. The bells
physically hammer themselves in the same manner as an old alarm clock, and
they pump out the decibels. The bells needed to be wired so that connecting
two wires would ring all the bells in the plant.

To control the bells, we needed to close the bells' circuit temporarily. I was
pointed toward a specific relay device, the AR-2, that can be controlled by a
computer over a serial port. This device would be used to complete the bell
circuit, causing them to ring. The AR-2 is sold by Electronic Energy Control, Inc.
(EECI) for about $44 US. It has two relays on a circuit board, and both can be
connected as normally open (NO) or normally closed (NC) relays. Only one relay
wired as NO would be used for this project. An enclosure (EN-B) to house the
board also was purchased. An emergency on/off switch was mounted on the
enclosure for use in case something went terribly wrong. The AR-2 is
documented well enough that I knew it would be possible to write a program in
C to control it. This program could be scheduled using cron jobs.

For time synchronization, the NTP protocol was chosen. NTP clients and servers
are unlikely to have interoperability problems due to a well-defined protocol
that is widely adopted. In addition, NTP clients can handle network latency,
daylight saving time and local time zones. Free clients are available for almost

every major operating system in use today. Computers using these clients can
readily obtain time sources accurate to at least the millisecond. Good accuracy
is exactly what we need when trying to synchronize multiple systems.

 Implementation Details

The five 12VAC bells were installed throughout the plant and in the designated
break areas so that everyone would hear them. The bells were wired in mixed
series and parallel with a 12VAC power supply supplied by the vendor. One lead
from the power supply was left unconnected to provide a point at which the
bells could be turned on and off.

https://secure2.linuxjournal.com/ljarchive/LJ/117/6693f1.large.jpg

https://secure2.linuxjournal.com/ljarchive/LJ/117/6693f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/6693f1.large.jpg

Figure 1. Schematic of the Bell System

I obtained one of our company's spare Dell PCs to use for this project, a basic
PC with a Pentium III 750MHz processor, 128MB of SDRAM, 40GB IDE hard
drive and an IDE CD-ROM. I used what was readily available, and really, the
computer is a lot more powerful than necessary.

The AR-2 relay device attaches to the computer's serial port and is controlled by
the DTR (data terminal ready) and RTS (ready to send) control lines. Setting RTS
to high energizes the first relay and setting DTR to high energizes the second
relay. Closing the bell circuit requires only one relay, so I needed to be able to
toggle only the RTS signal. Example programs in GWBASIC and Turbo C were
provided with the documentation. I wanted to write a program using GCC to
control the relay but had little experience in C programming, so I searched the
Web for some well-documented examples of C programs that made use of a
serial port.

The first interesting program I found was upscheck.c from Harvey J. Stein's UPS
HOWTO. upscheck, itself a modified version of Miquel van Smoorenburg's
powerd.c, makes use of both the RTS signal and the DTR signal. The program
originally was used to diagnose or examine UPS communications with a PC
over a serial port. When starting the program, you indicate with parameters to
which serial device the UPS is attached and whether to set RTS and/or DTR
high. After the program opens the port and sets or clears the indicated serial
control lines, the program would monitor another control line for feedback
from the UPS. The program did everything I needed and more. All I had to do
was remove the monitoring part, and I had my C program to control both relays
on the AR-2 (Listing 1). The program is compiled with the following command:

[root@pluto ar-2]# gcc -o ar-2 ar-2.c

[root@pluto ar-2]# ./ar-2
Usage: ar-2 <device> <bits-to-set> <hold-time>

Listing 1. ar-2.c

#include <sys/types.h>
#include <sys/ioctl.h>
#include <fcntl.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <signal.h>
/* Main program. */
int main(int argc, char **argv)
{
 int fd;
 int sleep_time;
 /* These TIOCM_* parameters are defined in

 * <linux/termios.h>, which
 * is indirectly included here.
 */
 int dtr_bit = TIOCM_DTR;
 int rts_bit = TIOCM_RTS;
 int set_bits;
 int flags;
 int status, oldstat = -1;
 int count = 0;
 int pc;
 if (argc < 3) {
 fprintf(stderr, "Usage: ar-2 <device> "
 "<bits-to-set> <hold-time>\n");
 exit(1);
 }
 /* Open monitor device. */
 if ((fd = open(argv[1], O_RDWR | O_NDELAY)) < 0) {
 fprintf(stderr, "ar-2: %s: %s\n",
 argv[1], sys_errlist[errno]);
 exit(1);
 }
 /* Get the bits to set from the command line. */
 sscanf(argv[2], "%d", &set_bits);
 /* get delay time from command line. */
 sscanf(argv[3], "%d", &sleep_time);
 ioctl(fd, TIOCMSET, &set_bits);
 sleep(sleep_time);
 close(fd);
}

The program compiled with no errors, and better yet, it ran with no errors.
Using the program is pretty straightforward, but let's briefly discuss it. AR-2
requires three parameters: device, bits-to-set and hold-time. Device refers to
the special character device that addresses the serial device to which the AR-2
is attached. For example, if the device is attached to COM1, the device would be
/dev/ttyS0. Bits-to-set is a little more complicated. It is a decimal number that
must be converted to binary to be understood. Bit 2 controls RTS or relay one,
and bit 3 controls DTR or relay two. So the decimal number 4, which in binary is
100, has the first bit set to zero, the second bit set to zero and the third bit set
to one. Therefore, if the bit-to-set parameter is the decimal number 4, the DTR
line would be placed high and the RTS line would remain low. The last
parameter, Hold-time, simply is the number of seconds the modem control
lines should be held in the state requested by the bits-to-set parameter.

I applied power to the AR-2 board and connected it to the serial port to test that
the program worked as I had hoped. With the AR-2 connected to ttyS0 (COM1), I
attempted to energize the first relay by placing RTS high by setting bit 2 with
the command ./ar-2 /dev/ttyS0 2 5. The program successfully placed
RTS high for five seconds. After the program exited, it placed the RTS line in its
original low state, de-energizing the relay. Next, I placed DTR high by setting bit
4 using the command ./ar-2 /dev/ttyS0 4 5. Both RTS and DTR could
be placed high by setting bits 4 and 2 at the same time, using the decimal
number 6 for the bits-to-set parameter. The LEDs on the board are helpful in
determining that both the AR-2 program and AR-2 board are operational.

Thanks to upscheck.c and its authors, I was able to place both the RTS and DTR
control lines in a low or high state for a specified amount time. Without the
source code listed in the UPS HOWTO, things would not have gone so
smoothly. With a little effort, I was able to find C source code that was close to
what I needed and modify it to meet my needs. I now can control two relays
from a single serial port.

At this point, the bells could be attached to the first relay on the AR-2 using the
NO contacts. Before connecting it all, though, I wanted to put the AR-2 in an
enclosure, a nice little box to hold all this stuff so the electronics aren't
exposed. I used the EN-B enclosure recommended and sold by EECI. It consists
of two plastic pieces, a top and bottom, with black plastic inserts to cover
openings on two sides. The enclosure is rather large for this job, but it works. I
had to cut the black plastic inserts so that the external connectors would be
accessible. Also, a hole was cut for the serial connector on the AR-2 that would
be used for the connection to the computer's serial port. A hole was drilled for
the female power connector that powers the AR-2 board. To connect the relay
and the bell circuit, I chose a red and black banana clip, which can be found at
most electronics stores. Two more holes were drilled for the banana clips. For
added functionality, I added a power switch and power LED to the top of the
enclosure so the power to the AR-2 board could be turned on and off. The LED
lights up when the AR-2 board is turned on. With the electronics tested and
enclosed, it was time to move on to the computer.

https://secure2.linuxjournal.com/ljarchive/LJ/117/6693f2.large.jpg

Figure 2. Connections to the AR-2 Board

I chose Red Hat 7.3 as the operating system. A fresh install was done, choosing
Server as the installation type. Once the Red Hat installation was completed, I
began customizing the box. I copied ar-2.c, the hacked-up version of
upscheck.c, to the box and compiled it. After it successfully compiled, I copied

https://secure2.linuxjournal.com/ljarchive/LJ/117/6693f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/6693f2.large.jpg

the resulting binary ar-2 to the /usr/bin/ directory, because the AR-2 program
runs from cron at specific times.

I wanted to allow remote administration of the cron jobs that ring the bells, so I
really didn't feel comfortable with them running as root. I therefore decided to
add a user for the specific task of ringing and gave it the user name bell with
the command, useradd bell. The user bell has no need to log in locally or
remotely, so it is a good idea to change the user's shell to a nonfunctioning one
with the command usermod -s /sbin/nologin bell.

A problem with permissions arises here that needs attention. In Red Hat 7.3,
the /dev/ttyS* devices have their permissions set so that only root and
members of the group uucp have read and write access to them. User bell,
however, needs to be able to write to the serial ports in order to control the
attached relay device. By default, the user bell does not have read or write
access to the serial devices. To solve this problem, I decided to make the user
bell a member of the uucp group. As root, I added the user bell to the group
uucp with the command usermod -G uucp bell. Now bell can use AR-2 on
the /dev/ttyS0 device to manipulate the control lines of the serial port.

For remote administration of the bell's cron jobs, I choose a Web-based tool
with which many Linux users are familiar, Usermin. I also downloaded Webmin
for the purpose of configuring Usermin and installed them both. After
installation, I logged in to Webmin and configured Usermin with the Usermin
Configuration module. Because only user bell should be able to use Usermin, I
used the Allowed Users and Groups module and selected “Only allow listed
users”; bell, was of course, the only user I added to the list. Next, I used
Available Modules to restrict all but the Scheduled Cron Jobs module. Last but
not least, I went into the User Interface module and clicked Yes for the Go
direct to module if user has only one option. Now bell is the only user that can
log in using Usermin, and when user bell does log in, Usermin jumps straight to
displaying Scheduled Cron Jobs. I also turned on mandatory SSL encryption.
Webmin wasn't needed for anything else, so I stopped it with service
Webmin stop. To make sure it does not start back up on a reboot, I entered
chkconfig webmin off.

Now we can log in to Usermin as the user bell and easily schedule the times at
which the bells should ring and how long they should last by using the
command /usr/bin/ar-2 /dev/ttyS0 2 2. Employees can feel
comfortable knowing the bell always lets them know when to start running.
Management can rest easy knowing they have yet another tool to help keep
things running smoothly, and I can rest easy knowing that it's running on Linux,
which means I don't have to worry about constantly babying it.

 Further Possibilities

This was a simple exercise that illustrated the use of controlling devices using a
relay over a serial interface. The low-cost relay used in this example is capable
of controlling any number of electrical devices. Also available are relay boards
that can be expanded to up to 128 relays per serial port, not to mention analog
and digital input cards.

Resources

Electronic Energy Control, Inc.: www.eeci.com

Red Hat: www.redhat.com

UPS HOWTO: www.tldp.org/HOWTO/UPS-HOWTO.html

Usermin and Webmin: www.usermin.com and www.webmin.com

Jason Ellison is from Fairhope, Alabama, and currently is a network analyst for
Delphi. He also maintains several Linux and AIX systems at Delphi.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.eeci.com
http://www.redhat.com
http://www.tldp.org/HOWTO/UPS-HOWTO.html
http://www.usermin.com
http://www.webmin.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/toc117.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Intermediate Emacs Hacking

Charles Curley

Issue #117, January 2004

Turn Emacs into your editor of choice with this easy customization tool.

Customizing Emacs is important to get the most out of it. You can change the
way it operates to reflect your way of doing things, which in turn makes you
more efficient. Just as custom-built boots fit better than factory boots, a
customized Emacs fits you better than standard, off-the-shelf Emacs.

Emacs changes can be session-specific or permanent. You can customize
Emacs directly by executing commands in the mini-buffer or by modifying
variables using the set-variable command. These changes are volatile, meaning
you lose them when you end your session. To make permanent changes, you
can create or modify an init file. Emacs examines several init files when it loads.
Probably the easiest way to customize is to edit .emacs, stored in your home
directory. Before loading your .emacs file, Emacs loads default.el from your
library path. Emacs also looks in its load path for site-start.el, which system
administrators may use to provide site-wide customization. Alternatively, you
can make permanent Emacs changes through the Customize menu
(Options→Customize Emacs in version 21.1 and up). This gives you a GUI-based
front end for modifying your .emacs file.

 Using Customize

Like most GUI front ends, Customize is not as powerful as hacking the text
configuration file, but it is easier to use. Fire up the Customization group, and
you notice that Emacs builds the menus on the fly. That way it's always up to
date (Figure 1).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/117/6771f1.large.jpg

Figure 1. The Top-Level Customization Menu

To navigate Customize's tree structure, either point to a button and press
Return or click on the button. Full Emacs searching also works in the Customize
buffers. Each level in the tree is represented in a buffer, and you can
manipulate Customize buffers as usual. For example, when you are done with a
level, kill the buffer.

I'd like to turn on the PHP speedbar whenever I enter PHP mode, for example,
when I visit a PHP file. To do this, I follow the menu tree to PHP mode
customization (Figure 2). As you can see, I've toggled the state but haven't yet
saved my changes. I can set it only for this session, or I can save the change for
future sessions. When I do the latter, Emacs edits my .emacs file. You can verify
the change by searching for the variable name in .emacs.

https://secure2.linuxjournal.com/ljarchive/LJ/117/6771f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/6771f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/6771f2.large.jpg

Figure 2. Setting the Speedbar to Turn On in PHP Mode

If you aren't sure of the name of a variable or where to find it in Customize's
vast tree, you can use regular expression searches on variable names and their
contents. If you want to change how Emacs prints, you could search on the
regex “print” and Emacs would build a custom Customize menu for you. See the
menu under Options→Customize Emacs for these and other options.

 Editing Your .emacs File

You also can modify Emacs' behavior by editing ~/.emacs directly. This is a good
way to add function and insert bulk customizations you may learn about from
other people. For example, C mode can be modified by setting variables that
affect how it operates.

Many modes are customized on a per-buffer basis. This means you write a
short function that sets the variables and set that function to be executed
whenever Emacs enters the mode. The outline of it is:

(defun rays_c_mode ()
 "ray's c/c++ mode hook"
 (message "Loading Ray's C mode...")
 ...
 (message "Loading Ray's C mode... Done")
)
(add-hook 'c-mode-common-hook 'rays_c_mode)

The Lisp function defun defines a function, in this case rays_C_mode. The
function takes no parameters; it prints out messages only for the user's benefit.
The last line adds the function rays_c_mode to C mode's mode hook, that is, a
list of functions executed whenever Emacs enters C mode. You can see more of
Ray's C mode in my personal .emacs file (see Resources).

It is customary to name the variables for a particular mode by prepending the
mode's name to them. To see variables associated with a particular mode,
then, make a regex search on the variable name, with M-X apropos-
variable. For C mode, we eliminate a lot of false hits with the regex “^c-”.

https://secure2.linuxjournal.com/ljarchive/LJ/117/6771f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/6771f2.large.jpg

When Emacs returns a list of the results, move to that buffer and press Return
on any variable that interests you for more information.

To find out what else you can search on, try M-X apropos-command RET
apropos RET. "apropos-zippy"? I'll let you examine that one.

A function can, of course, call other functions. This possibility is one of several
things that make editing your .emacs file and programming in Emacs Lisp more
powerful than using Customize.

 Printing

Emacs, as usual, offers you a lot of flexibility for printing. You can print by
sending the raw contents of the buffer to the printer. This is quick and easy, but
it may not give you exactly what you wanted. You have far more control over
PostScript printing, so that may be the way to go. For one thing, font-locked
(colorized) buffers print in color on color printers and in gray scale on
monochrome printers, where Ghostscript supports those features.

Probably the most common change to Emacs in the printing area is changing
the name of Emacs' default printer. This can be nil, which tells Emacs to use the
default printer, lp in Linux or UNIX. Or, it can be a printer name such that the lp
dæmon recognizes it as a printer name. If you have Red Hat's printtool or
similar, you can get printer names from it. Failing that, look in /var/spool/lpd/
for the names of your printers. Emacs can use any printer for which you can
define a local queue, including remote printers.

Two variables are set to indicate the printer, one for PostScript printing and one
for non-PostScript printing. The code below shows how I set up Emacs under
Linux and Windows. The Windows definition uses a remote printer on the
computer charlesc. Setting both printers to the same computer works only
because the server is a Linux box. The printcap detects PostScript and runs it
through Ghostscript before printing it:

;; Begin setup for printing on Win32
(if (and (>= sams-Gnu-Emacs-p 20)

 (memq window-system '(win32 w32)))
 (progn (setq printer-name "//charlesc/lp")

 (setq ps-printer-name "//charlesc/lp"))
)
;; End setup for printing on Win32

;; Begin setup for printing on Linux
(if (and (>= sams-Gnu-Emacs-p 20)

 (string-equal system-name "charlesc.localdomain"))

 (progn (setq printer-name "lp")
 (setq ps-printer-name "lp"))

)
;; End setup for printing on Linux

Emacs' PostScript printing is very powerful. By default, it prints a gray box at the
top of each page with the buffer's name, the data, a page number and a count.

You can set a text string and other characterstics of a watermark on each page
or on selected pages. For example, a watermark of Preliminary or Draft is a
good idea for code reviews; see the variable ps-print-background-text. You also
can use an EPS image, such as a picture of Tux or the Free Software
Foundation's GNU logo, for a watermark.

We geriatric cases who don't like 8.5 point type can change the value of ps-font-
size. The value contans two numbers, the first for landscape and the second for
portrait printing. Whether to print landscape or portrait is controlled by the
variable ps-landscape-mode.

You can modify the default PostScript header and add a footer as well. For two-
sided printing, you may specify left and right headers and footers. And if you
want to save trees, look at ps-n-up-printing. It lets you print multiple pages on a
sheet of paper.

 Font Selection

Emacs supports multiple frames or windows. You can launch another frame
with Ctrl-X 5 2, or remove one with Ctrl-X 5 0. The initial frame created when
Emacs is launched has a number of graphics characteristics defined by the
variable initial-frame-alist. Subsequent frames are governed by default-frame-
alist. Use these two variables identically. Each variable is a list of sub-variables
and their values, rather like a hash in Perl. For example, to set the initial
position of the first frame on the screen, use:

(setq initial-frame-alist
 '((top . 40) (left . -15)
 (width . 96) (height . 40)
 (background-color . "Gray94")
 (foreground-color . "Black")
 (cursor-color . "red3")
 (user-position t)
))

This definition sets the Emacs initial frame 40 pixels from the top of the screen,
15 pixels from the right (hence the negative number for left), with a width of 96

characters and a height of 40 lines. It sets the default background and
foreground text colors and then sets the cursor color.

This definition is also where you set your font, if you don't like the default. The
program xfontsel comes with XFree86, and you can use it to find a suitable font
(Figure 3). Press Select as an option, and xfontsel puts it into the clipboard. Add
another pair of parentheses to the definition of initial-frame-alist, insert the
phrase font . and insert a pair of quote marks. Then recover the font
definition between the quotes with Ctrl-Y, like any other clipboard entry:

(font . "-adobe-courier-*-r-*-*-*-140-*-*-*-*-*-*")

Figure 3. Selecting a Font with X's Utility Program xfontsel

If you are wondering how I get the colors in my screenshots, that's how I do it.

If you have problems with these settings, look in your .Xresources file for any
Emacs settings. Any settings in .Xresources overrides these definitions. To get
rid of the overrides, comment them out of the .Xresources file and restart X.

Until recently, Emacs had no support for variable-width fonts, and fixed-width
fonts are fine for most purposes. But with support for proportional fonts and
non-English character sets included in recent versions, you now can define your
own sets of fonts within Emacs. Fontsets allow word-processor ease of control
over fonts. For examples, take a look at the headers in Emacs' Info and the
Customize menus; see also Emacs' info nodes on fontsets.

For more information on fonts under X, see Emacs' info node on Font
Specification Options.

 The Speedbar

I explained how to automate turning on the speedbar in the discussion of the
Customize Emacs system. Speedbar is a separate frame (window) that allows
mouse-click navigation among Emacs buffers. As you can see from the
illustration, the speedbar allows for tree structures, like Emacs' Info system.
Click on the + to open subnodes, and click on the – to close them (Figure 4).

https://secure2.linuxjournal.com/ljarchive/LJ/117/6771f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/6771f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/6771f3.large.jpg

Figure 4. Emacs' Speedbar Point-and-Click Browsing Interface

When you are editing in certain modes—Rmail, Info and GUD, for example—the
speedbar shows other selections to be edited in that mode. For example, when
you are in Info mode, the speedbar displays nodes. Otherwise, it shows files in
the directory where the file in the current buffer is located.

If you have a lot of files open in Emacs, the speedbar is a useful tool. I often
have more than 30 files open simultaneously, and the speedbar helps me
manage and switch between them.

 Emacs Is for E-mail

In the article “Getting Started with Emacs”, LJ, March, 2003, I demonstrated how
to use Emacs as a server, letting programs like crontab and mutt use Emacs for
file editing. To carry this further, you can use Emacs as the editor for any

application that can call on an external editor, including mail readers. However,
Emacs has at least two mail modes and a powerful newsreader called GNUS.

To send a message, Ctrl-X M (or M-X mail) puts you in mail mode. Simply edit a
message and send it (Figure 5). As the screen capture shows, you see a skeleton
of an e-mail ready for you to fill in the blanks. You can use control character
sequences to move to (and create, if necessary) additional headers, like FCC.
You can use tab completion in the headers. There, it looks at local system users
and the contents of any e-mail aliases you have defined in your .emacs.

Figure 5. A Skeleton E-mail in Emacs' Mail Mode

You can insert your signature with Ctrl-C Ctrl-W, or you can have Emacs do that
for you by setting mail-signature to t in your .emacs file. If you want to get
fancy and write a Lisp program to select a signature for you based on, well,
whatever you can write Lisp code to detect.

You can run a spell-checker on your message. Entering M-X ispell-message
checks only the body of the message, skipping any quoted material.

 Reading Mail

In Emacs, read and reply to your incoming mail with rmail mode (M-X rmail)
(Figure 6). One of the first things you may wish to do is create a summary buffer
or automate it by modifying the rmail mode hook. This creates a buffer familiar
to most users: one line per message with the date, source e-mail address, data
size and subject in that line. As you can see in Figure 7, the message in the rmail
buffer is highlighted in green. The normal Emacs navigation keys work in the
summary buffer.

https://secure2.linuxjournal.com/ljarchive/LJ/117/6771f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/6771f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/6771f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/6771f6.large.jpg

Figure 6. An E-mail Message in rmail Mode

Figure 7. rmail Mode with a Summary

Emacs mail operates in a somewhat convoluted way in order to accommodate
multiple operating systems. When you start an rmail buffer, it moves mail from
your inbox file, typically in /var/spool/mail on Linux, into a file, ~/RMAIL. This is
the file you normally edit. You can put e-mail into ~/RMAIL at any time with the
G key. If you have a POP or IMAP account, try using fetchmail to put your mail
in the inbox.

Emacs uses the Babyl mail file format. You can export individual messages as
text files; entire rmail files can be exported in mailbox format.

Most mail readers use multiple mail files (directories, if they use maildir mail
format). Emacs can shift from one rmail file to another, but you may not need
to. Instead, you can create customized summaries using regular expressions
and other search patterns. You can specify summaries based on recipients, a
regular expression search within the subject or labels.

https://secure2.linuxjournal.com/ljarchive/LJ/117/6771f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/6771f6.large.jpg

You can have multiple rmail files and associate each one with one or more
inboxes. This means that folks with spam filters such as SpamAssassin, already
running or using procmail recipes to deliver their e-mail to separate files need
not abandon that investment. Each time you visit an rmail file, Emacs gets any
new mail from the associated input files.

You can reply and forward e-mail in rmail mode. Either one opens up a mail
mode buffer with the e-mail headers already completed. You can use Ctrl-C
Ctrl-Y to yank in the message to which you are replying. If you want to reply to
multiple e-mails, switch to the rmail buffer, select a different message, switch
back and yank the new current message. To be RFC-compliant, you will have to
set the quoting character by customizing mail-yank-prefix to use the string >.

Resources

Author's .emacs: www.charlescurley.com/~ccurley/emacs.init.html

Emacs Beginner's HOWTO: www.tldp.org/HOWTO/Emacs-Beginner-
HOWTO.html, or possibly already on your computer with the rest of the LDP
docs.

Emacs' Built-in Help System: Ctrl-H

Emacs for Vi Users: grok2.tripod.com

“Emacs: the Free Software IDE”, by Charles Curley, LJ June 2002: /article/5765

Emacs Wiki: www.emacswiki.org/cgi-bin/wiki.pl

fetchmail: www.catb.org/~esr/fetchmail

“Getting Started with Emacs”, by Charles Curley, LJ, March 2003

GNU Emacs Home Page: www.fsf.org/software/emacs/emacs.html

GNU Emacs Lisp Reference Manual: www.gnu.org/manual/elisp-manual-20-2.5/
elisp.html

GNU Emacs Tutorial (Old, but Still Useful): www.futureone.com/~sponge/
tutorial/emacs/index.html

How do I make common modifications to my Gnu Emacs .emacs file?
www.yak.net/fqa/124.html

http://www.charlescurley.com/~ccurley/emacs.init.html
http://www.tldp.org/HOWTO/Emacs-Beginner-HOWTO.html
http://www.tldp.org/HOWTO/Emacs-Beginner-HOWTO.html
http://grok2.tripod.com
https://secure2.linuxjournal.com/ljarchive/LJ/098/5765.html
http://www.emacswiki.org/cgi-bin/wiki.pl
http://www.catb.org/~esr/fetchmail
http://www.fsf.org/software/emacs/emacs.html
http://www.gnu.org/manual/elisp-manual-20-2.5/elisp.html
http://www.gnu.org/manual/elisp-manual-20-2.5/elisp.html
http://www.futureone.com/~sponge/tutorial/emacs/index.html
http://www.futureone.com/~sponge/tutorial/emacs/index.html
http://www.yak.net/fqa/124.html

Procmail: www.procmail.org

Programming in Emacs Lisp: An Introduction, by Robert J. Chassell:
www.gnu.org/manual/emacs-lisp-intro/emacs-lisp-intro.html

SpamAssassin: spamassassin.org

Tips—emacs “Nifty ways to get your work done in /the/ editor”:
www.portico.org/index.php3?catList=28

“very unofficial .emacs home”, by Ingo Koch: www.dotemacs.de

Charles Curley (www.charlescurley.com) teaches Linux at two Wyoming
colleges. He also writes software and articles and books, using open-source
software tools such as Emacs. His desktop has been a “Microsoft Free Zone” for
more than three years, and he contributed to Sams' Teach Yourself Emacs in 24
Hours (ISBN: 0-672-31594-7).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.procmail.org
http://www.gnu.org/manual/emacs-lisp-intro/emacs-lisp-intro.html
http://spamassassin.org
http://www.portico.org/index.php3?catList=28
http://www.dotemacs.de
http://www.charlescurley.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/toc117.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Monitoring Hard Disks with SMART

Bruce Allen

Issue #117, January 2004

One of your hard disks might be trying to tell you it's not long for this world.
Install software that lets you know when to replace it.

It's a given that all disks eventually die, and it's easy to see why. The platters in
a modern disk drive rotate more than a hundred times per second, maintaining
submicron tolerances between the disk heads and the magnetic media that
store data. Often they run 24/7 in dusty, overheated environments, thrashing
on heavily loaded or poorly managed machines. So, it's not surprising that
experienced users are all too familiar with the symptoms of a dying disk.
Strange things start happening. Inscrutable kernel error messages cover the
console and then the system becomes unstable and locks up. Often, entire
days are lost repeating recent work, re-installing the OS and trying to recover
data. Even if you have a recent backup, sudden disk failure is a minor
catastrophe.

Many users and system administrators don't know that Self-Monitoring,
Analysis and Reporting Technology systems (SMART) are built in to most
modern ATA and SCSI hard disks. SMART disk drives internally monitor their
own health and performance. In many cases, the disk itself provides advance
warning that something is wrong, helping to avoid the scenario described
above. Most implementations of SMART also allow users to perform self-tests
on the disk and to monitor a number of performance and reliability attributes.

By profession I am a physicist. My research group runs a large computing
cluster with 300 nodes and 600 disk drives, on which more than 50TB of physics
data are stored. I became interested in SMART several years ago when I
realized it could help reduce downtime and keep our cluster operating more
reliably. For about a year I have been maintaining an open-source package
called smartmontools, a spin-off of the UCSC smartsuite package, for this
purpose.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

In this article, I explain how to use smartmontools' smartctl utility and smartd
dæmon to monitor the health of a system's disks. See
smartmontools.sourceforge.net for download and installation instructions and
consult the WARNINGS file for a list of problem disks/controllers. Additional
documentation can be found in the man pages (man smartctl and man
smartd) and on the Web page.

Versions of smartmontools are available for Slackware, Debian, SuSE,
Mandrake, Gentoo, Conectiva and other Linux distributions. Red Hat's existing
products contain the UCSC smartsuite versions of smartctl and smartd, but the
smartmontools versions will be included in upcoming releases.

To understand how smartmontools works, it's helpful to know the history of
SMART. The original SMART spec (SFF-8035i) was written by a group of disk
drive manufacturers. In Revision 2 (April 1996) disks keep an internal list of up
to 30 Attributes corresponding to different measures of performance and
reliability, such as read and seek error rates. Each Attribute has a one-byte
normalized value ranging from 1 to 253 and a corresponding one-byte
threshold. If one or more of the normalized Attribute values less than or equal
to its corresponding threshold, then either the disk is expected to fail in less
than 24 hours or it has exceeded its design or usage lifetime. Some of the
Attribute values are updated as the disk operates. Others are updated only
through off-line tests that temporarily slow down disk reads/writes and, thus,
must be run with a special command. In late 1995, parts of SFF-8035i were
merged into the ATA-3 standard.

Starting with the ATA-4 standard, the requirement that disks maintain an
internal Attribute table was dropped. Instead, the disks simply return an OK or
NOT OK response to an inquiry about their health. A negative response
indicates the disk firmware has determined that the disk is likely to fail. The
ATA-5 standard added an ATA error log and commands to run disk self-tests to
the SMART command set.

To make use of these disk features, you need to know how to use
smartmontools to examine the disk's Attributes (most disks are backward-
compatible with SFF-8035i), query the disk's health status, run disk self-tests,
examine the disk's self-test log (results of the last 21 self-tests) and examine the
disk's ATA error log (details of the last five disk errors). Although this article
focuses on ATA disks, additional documentation about SCSI devices can be
found on the smartmontools Web page.

To begin, give the command smartctl -a /dev/hda, using the correct
path to your disk, as root. If SMART is not enabled on the disk, you first must

http://smartmontools.sourceforge.net

enable it with the -s on option. You then see output similar to the output
shown in Listings 1–5.

The first part of the output (Listing 1) lists model/firmware information about
the disk—this one is an IBM/Hitachi GXP-180 example. Smartmontools has a
database of disk types. If your disk is in the database, it may be able to
interpret the raw Attribute values correctly.

Listing 1. Output of smartctl -i /dev/hda

Device Model: IC35L120AVV207-0
Serial Number: VNVD02G4G3R72G
Firmware Version: V24OA63A
Device is: In smartctl database [for details use: -P show]
ATA Version is: 6
ATA Standard is: ATA/ATAPI-6 T13 1410D revision 3a
SMART support is: Available - device has SMART capability.
SMART support is: Enabled

The second part of the output (Listing 2) shows the results of the health status
inquiry. This is the one-line Executive Summary Report of disk health; the disk
shown here has passed. If your disk health status is FAILING, back up your data
immediately. The remainder of this section of the output provides information
about the disk's capabilities and the estimated time to perform short and long
disk self-tests.

Listing 2. Output of smartctl -Hc /dev/hda

SMART overall-health self-assessment test result: PASSED

General SMART Values:
Off-line data collection status: (0x82) Offline data collection activity
 was completed without error.
 Auto Off-line Data Collection:
Enabled.
Self-test execution status: (0) The previous self-test routine
 completed without error or no
 self-test has ever been run.
Total time to complete off-line
data collection: (2855) seconds.
Offline data collection
capabilities: (0x1b) SMART execute Offline immediate.
 Automatic timer ON/OFF support.
 Suspend Offline collection upon new
 command.
 Offline surface scan supported.
 Self-test supported.
 No Conveyance Self-test supported.
 No Selective Self-test supported.
SMART capabilities: (0x0003) Saves SMART data before entering
 power-saving mode.
 Supports SMART auto save timer.
Error logging capability: (0x01) Error logging supported.
 General Purpose Logging supported.
Short self-test routine
recommended polling time: (1) minutes.
Extended self-test routine
recommended polling time: (48) minutes.

The third part of the output (Listing 3) lists the disk's table of up to 30 Attributes
(from a maximum set of 255). Remember that Attributes are no longer part of
the ATA standard, but most manufacturers still support them. Although
SFF-8035i doesn't define the meaning or interpretation of Attributes, many
have a de facto standard interpretation. For example, this disk's 13th Attribute
(ID #194) tracks its internal temperature.

Listing 3. Output of smartctl -A /dev/hda

Vendor Specific SMART Attributes with Thresholds:
ID# ATTRIBUTE_NAME FLAG VALUE WORST THRESH TYPE UPDATED WHEN_FAILED RAW_VALUE
1 Raw_Read_Error_Rate 0x000b 100 100 060 Pre-fail Always - 0
2 Throughput_Performance 0x0005 155 155 050 Pre-fail Offline - 225
3 Spin_Up_Time 0x0007 097 097 024 Pre-fail Always - 293 (Average 270)
4 Start_Stop_Count 0x0012 100 100 000 Old_age Always - 10
5 Reallocated_Sector_Ct 0x0033 100 100 005 Pre-fail Always - 0
7 Seek_Error_Rate 0x000b 100 100 067 Pre-fail Always - 0
8 Seek_Time_Performance 0x0005 125 125 020 Pre-fail Offline - 36
9 Power_On_Hours 0x0012 100 100 000 Old_age Always - 3548
10 Spin_Retry_Count 0x0013 100 100 060 Pre-fail Always - 0
12 Power_Cycle_Count 0x0032 100 100 000 Old_age Always - 10
192 Power-Off_Retract_Count 0x0032 100 100 050 Old_age Always - 158
193 Load_Cycle_Count 0x0012 100 100 050 Old_age Always - 158
194 Temperature_Celsius 0x0002 189 189 000 Old_age Always - 29 (Lifetime Min/Max 23/33)
196 Reallocated_Event_Count 0x0032 100 100 000 Old_age Always - 0
197 Current_Pending_Sector 0x0022 100 100 000 Old_age Always - 0
198 Offline_Uncorrectable 0x0008 100 100 000 Old_age Offline - 0
199 UDMA_CRC_Error_Count 0x000a 200 200 000 Old_age Always - 0

Studies have shown that lowering disk temperatures by as little as 5°C
significantly reduces failure rates, though this is less of an issue for the latest
generation of fluid-drive bearing drives. One of the simplest and least
expensive steps you can take to ensure disk reliability is to add a cooling fan
that blows cooling air directly onto or past the system's disks.

Each Attribute has a six-byte raw value (RAW_VALUE) and a one-byte
normalized value (VALUE). In this case, the raw value stores three
temperatures: the disk's temperature in Celsius (29), plus its lifetime minimum
(23) and maximum (33) values. The format of the raw data is vendor-specific
and not specified by any standard. To track disk reliability, the disk's firmware
converts the raw value to a normalized value ranging from 1 to 253. If this
normalized value is less than or equal to the threshold (THRESH), the Attribute
is said to have failed, as indicated in the WHEN_FAILED column. The column is
empty because none of these Attributes has failed. The lowest (WORST)
normalized value also is shown; it is the smallest value attained since SMART
was enabled on the disk. The TYPE of the Attribute indicates if Attribute failure
means the device has reached the end of its design life (Old_age) or it's an
impending disk failure (Pre-fail). For example, disk spin-up time (ID #3) is a
prefailure Attribute. If this (or any other prefail Attribute) fails, disk failure is
predicted in less than 24 hours.

The names/meanings of Attributes and the interpretation of their raw values is
not specified by any standard. Different manufacturers sometimes use the
same Attribute ID for different purposes. For this reason, the interpretation of
specific Attributes can be modified using the -v option to smartctl; please
see the man page for details. For example, some disks use Attribute 9 to store
the power-on time of the disk in minutes; the -v 9,minutes option to
smartctl correctly modifies the Attribute's interpretation. If your disk model
is in the smartmontools database, these -v options are set automatically.

The next part of the smartctl -a output (Listing 4) is a log of the disk errors.
This particular disk has been error-free, and the log is empty. Typically, one
should worry only if disk errors start to appear in large numbers. An occasional
transient error that does not recur usually is benign. The smartmontools Web
page has a number of examples of smartctl -a output showing some
illustrative error log entries. They are timestamped with the disk's power-on
lifetime in hours when the error occurred, and the individual ATA commands
leading up to the error are timestamped with the time in milliseconds after the
disk was powered on. This shows whether the errors are recent or old.

Listing 4. Output of smartctl -l error /dev/hda

SMART Error Log Version: 1
No Errors Logged

The final part of the smartctl output (Listing 5) is a report of the self-tests
run on the disk. These show two types of self-tests, short and long. (ATA-6/7
disks also may have conveyance and selective self-tests.) These can be run with
the commands smartctl -t short /dev/hda and smartctl -t
long /dev/hda and do not corrupt data on the disk. Typically, short tests
take only a minute or two to complete, and long tests take about an hour.
These self-tests do not interfere with the normal functioning of the disk, so the
commands may be used for mounted disks on a running system. On our
computing cluster nodes, a long self-test is run with a cron job early every
Sunday morning. The entries in Listing 5 all are self-tests that completed
without errors; the LifeTime column shows the power-on age of the disk when
the self-test was run. If a self-test finds an error, the Logical Block Address (LBA)
shows where the error occurred on the disk. The Remaining column shows the
percentage of the self-test remaining when the error was found. If you suspect
that something is wrong with a disk, I strongly recommend running a long self-
test to look for problems.

Listing 5. Output of smartctl -l selftest /dev/hda

SMART Self-test log, version number 1
Num Test_Description Status Remaining LifeTime(hours)

LBA_of_first_error
1 Extended off-line Completed 00% 3525 -
2 Extended off-line Completed 00% 3357 -
3 Short off-line Completed 00% 3059 -

The smartctl -t offline command can be used to carry out off-line
tests. These off-line tests do not make entries in the self-test log. They date
back to the SFF-8035i standard, and update values of the Attributes that are not
updated automatically under normal disk operation (see the UPDATED column
in Listing 3). Some disks support automatic off-line testing, enabled by
smartctl -o on, which automatically runs an off-line test every few hours.

The SMART standard provides a mechanism for running disk self-tests and for
monitoring aspects of disk performance. Its main shortcoming is that it doesn't
provide a direct mechanism for informing the OS or user if problems are found.
In fact, because disk SMART status frequently is not monitored, many disk
problems go undetected until they lead to catastrophic failure. Of course, you
can monitor disks on a regular basis using the smartctl utility, as I've described,
but this is a nuisance.

The remaining part of the smartmontools package is the smartd dæmon that
does regular monitoring for you. It monitors the disk's SMART data for signs of
problems. It can be configured to send e-mail to users or system administrators
or to run arbitrary scripts if problems are detected. By default, when smartd is
started, it registers the system's disks. It then checks their status every 30
minutes for failing Attributes, failing health status or increased numbers of ATA
errors or failed self-tests and logs this information with SYSLOG in /var/log/
messages by default.

You can control and fine-tune the behavior of smartd using the configuration
file /etc/smartd.conf. This file is read when smartd starts up, before it forks into
the background. Each line contains Directives pertaining to a different disk. The
configuration file on our computing cluster nodes look like this:

/etc/smartd.conf config file
/dev/hda -S on -o on -a -I 194 -m sense@phys.uwm.edu
/dev/hdc -S on -o on -a -I 194 -m sense@phys.uwm.edu

The first column indicates the device to be monitored. The -o on Directive
enables the automatic off-line testing, and the -S on Directive enables
automatic Attribute autosave. The -m Directive is followed by an e-mail address
to which warning messages are sent, and the -a Directive instructs smartd to
monitor all SMART features of the disk. In this configuration, smartd logs
changes in all normalized attribute values. The -I 194 Directive means ignore
changes in Attribute #194, because disk temperatures change often, and it's
annoying to have such changes logged on a regular basis.

Normally smartd is started by the normal UNIX init mechanism. For example,
on Red Hat distributions, /etc/rc.d/init.d/smartd start and /etc/
rc.d/init.d/smartd stop can be used to start and stop the dæmon.

Further information about the smartd and its config file can be found in the
man page (man smartd), and summaries can be found with the commands
smartd -D and smartd -h. For example, the -M test Directive sends a
test e-mail warning message to confirm that warning e-mail messages are
delivered correctly. Other Directives provide additional flexibility, such as
monitoring changes in raw Attribute values.

What should you do if a disk shows signs of problems? What if a disk self-test
fails or the disk's SMART health status fails? Start by getting your data off the
disk and on to another system as soon as possible. Second, run some extended
disk self-tests and see if the problem is repeatable at the same LBA. If so,
something probably is wrong with the disk. If the disk has failing SMART health
status and is under warranty, the vendor usually will replace it. If the disk is
failing its self-tests, many manufacturers provide specialized disk health
programs, for example, Maxtor's PowerMax or IBM's Drive Fitness Test.
Sometimes these programs actually can repair a disk by remapping bad
sectors. Often, they report a special error code that can be used to get a
replacement disk.

This article has covered the basics of smartmontools. To learn more, read the
man pages and Web page, and then write to the support mailing list if you need
further help. Remember, smartmontools is no substitute for backing up your
data. SMART cannot and does not predict all disk failures, but it often provides
clues that something is amiss and has helped to keep many computing clusters
operating reliably.

Several developers are porting smartmontools to FreeBSD, Darwin and Solaris,
and we recently have added extensions to allow smartmontools to monitor and
control the ATA disks behind 3ware RAID controllers. If you would like to
contribute to the development of smartmontools, write to the support mailing
list. We especially are interested in information about the interpretation and
meaning of vendor-specific SMART Attribute and raw values.

Bruce Allen is a professor of Physics at the University of Wisconsin - Milwaukee.
He does research work on gravitational waves and the very early universe, and
he has built several large Linux clusters for data analysis use.

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/toc117.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

 Linux in Air Traffic Control

Tom Brusehaver

Issue #117, January 2004

Linux is the natural development platform for the Federal Aviation
Administration's air-traffic control software.

Many people say Linux isn't ready for air traffic control, but in reality, it is ready
and already is being used. Recently I was involved in a project that ported the
FAA's Common ARTS software (www1.faa.gov/ats/atb/Sectors/Automation/
CommonArts/index.htm) to Linux.

A Controller in Atlanta

When most of us think of air traffic control systems, we usually see round
screens with a sweep. Some people know what the RADAR antenna array looks
like. Between the RADAR antenna and the display are a few computers to make
things easier. The Digital Signal Processors (DSPs) are in the antenna building,
and automation systems are used as well. This article describes how the
automation system works, and where Linux was used.

 History

The Automated Radar Terminal System (ARTS) got its start back in 1964 on
Univac computers. The system eventually went nationwide in 1973. The original
computers have been upgraded and continue to be used today. Many of the

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www1.faa.gov/ats/atb/Sectors/Automation/CommonArts/index.htm
http://www1.faa.gov/ats/atb/Sectors/Automation/CommonArts/index.htm

larger sites moved from the Univac computers to microprocessors during the
1980s. All of the legacy ARTS software was ported or rewritten in C to run under
the real-time LynxOS during the move to microprocessors.

Full digital ARTS display. The ACDs (right side) are replacing these vector displays. All the
knobs are now menus on the display.

The move to LynxOS was fortuitous, as it provided a POSIX base to which
further porting could be done. Using LynxOS also allowed developers to choose
which microprocessors to use. Initially, the software ran on Motorola 68K CPUs,
and it currently runs on PowerPCs.

 Architecture

The Common ARTS system is a highly distributed, networked, multithreaded,
real-time system. Absolute reliability is a requirement. Dual networks are used,
and under normal conditions, two backups are assigned to each specific task.
The software is designed such that some functions of one subsystem can be
taken over by another subsystem.

The RADAR data comes in over serial lines to each of the track processors (TPs).
Normally, four serial lines go from each RADAR to each TP. The data on the
RADAR include the raw RADAR signal, a transponder beacon (each aircraft
should have a transponder that returns an ID and an altitude in the beacon
each time the RADAR pings the aircraft) and weather data. The same antenna
array usually receives all three signals. Any of the RADAR and beacon data can

https://secure2.linuxjournal.com/ljarchive/LJ/117/7066f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7066f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7066f2.large.jpg

go down any of three serial lines, with weather transferring on its own serial
line.

The TP is divided into at least two subsystems, the serial message assembly and
the actual track processing. Serial message assembly converts each message
type (raw RADAR, beacon and weather) into a network message. Track
processing involves correlating RADAR and beacon messages (targets) into a
single track. A track is the known history of the aircraft. Targets can be RADAR,
beacon signals or both. Once a target is correlated to a track, another track
message is put on the network.

Messages usually are broadcast on the network. They are sent using UDP on
both trunks, and each message has a unique packet ID. Each computer on the
network listens to both trunks and keeps a record of the packet IDs it has heard
from each unique network ID. If there is a gap in packet IDs, a chassis may
request a rebroadcast. Duplicate packet IDs are ignored, assuming it was the
message on the other trunk or some other chassis requesting a rebroadcast.

Each system must broadcast heartbeats on the network. If a heartbeat is
missed, it is assumed the system is down, and one of the other systems sends a
message to have a standby system take over.

The next processor to deal with the network messages is the common
processor (CP). The CP does many things, such as matching flight plans to
tracks, sending conflict alerts (CAs), minimum safe altitude warning (MSAW) and
monitoring some of the Common ARTS system heartbeats. The biggest thing
the CP does is determine airspeed and direction of a track.

CA uses the speed and direction to look at other tracks to determine the
possibility of a conflict. If a conflict is detected, the CP broadcasts a CA message
indicating the aircraft in conflict. When aircraft are traveling at 300KTS—about
five miles a minute—it is important to be looking a minute or two ahead.

MSAW uses a site-adapted map to learn terrain in the area. The terrain can be
hills and mountains as well as towers and buildings. For transponder-equipped
aircraft, the MSAW system looks at the altitude and the position and
determines if the aircraft may be too low. If an aircraft is determined to be too
low, an MSAW message is broadcast.

The last major system in the back room is the system monitor and control
(SMC). The main purpose of the SMC is to monitor and control the other
systems. It is a gateway to the SMC display PC, a GUI for monitoring the
network and its current state. Current state indicates the systems that are on-
line, off-line, standby or idle. If a heartbeat is missed, the SMC instructs a

standby system to take over. A system operator can instruct a manual switch at
anytime, load new software or reboot systems from this PC. The SMC also is
used for recording all the data that crosses the network.

What most of us think of when we think of air traffic control are the displays: a
room full of round vector displays and guys in white shirts watching them.
More and more sites are using large 20"-square color displays. The new color
displays are 2048×2048 pixel, X window displays. The design of the display
processing software (DPS) is such that parts of it can be used by any display
type, the color square display, like an ARTS Color Display (ACD) or the round
vector display, like a Full Digital ARTS Display (FDAD).

Actual screenshot of the 8-bit VGA Linux DPS software. Compared to the ACD display, only the
all-brown weather is different. The blue history trails look similar, and the green beacon and
RADAR images are the same. The menu is transparent to the map, but not weather.

https://secure2.linuxjournal.com/ljarchive/LJ/117/7066f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7066f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7066f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7066f4.large.jpg

A real controller watching an ACD.

The DPS receives the broadcast messages and displays appropriate images
depending on the state of the system. In normal operation, the display includes
a track indication, a direction history indication, a full or partial datablock and
the state of the various systems.

The flight plan information message from the CP is displayed in the full
datablock near the aircraft for which the TP created the track. The broadcast
SMC overall state can be displayed as well. The network can use one or several
hundred displays.

In addition, each system can be run on one or more CPUs. If the CPU is
powerful enough, all the systems and subsystems can be run on a single CPU.

 Porting

Initially, the reason for the port to Linux was to allow developers to test and
debug the systems at their desks before testing on the target hardware. The
target hardware is Motorola OEM boards in a VME chassis running LynxOS. The
systems are relatively expensive, so neither the FAA nor Lockheed-Martin wants
to have a bunch sitting around. Instead, several test systems are used almost
full-time for integration testing and development.

Because the IS department gives developers a Microsoft Windows NT PC, an
attempt was made to port the software to NT. Most of the port was completed
when I started working for the company. For testing some things, NT worked
fine. An adapter layer was used to make the POSIX threads, file I/O and
graphics behave like the target system, so it wasn't good at testing those
features.

https://secure2.linuxjournal.com/ljarchive/LJ/117/7066f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7066f4.large.jpg

When I started contracting at Lockheed-Martin, I was placed in the messaging
layer group, the group that maintains the communications, threading and file I/
O for the system. Basically, none of my testing could be done on the desktop,
and I had to use the target hardware. Initially, a side project was working to see
if it was possible, and I was given one old (200MHz Pentium) PC for
development purposes.

Most of the code compiled just fine, although there were some issues with
POSIX standards. LynxOS 2.4 and 3.0 used an older standard, whereas Linux
uses the current one. I initially was doing the development on Red Hat 7.0 with
a 2.2 kernel, and it didn't support named semaphores or named shared
memory segments. In a distributed system like ours, it is easier to use standard
names within a processor than some other communication mechanism to
know where the shared memory and semaphores are. I did cobble together a
named shared memory compatibility layer, and I found a Russian site with a
named semaphore compatibility layer.

During development I moved to Red Hat 7.1, which was supposed to support
named shared memory, but there was an incompatibility between glibc and the
header files. I was able to look in the source to find this problem, and I posted a
note to the kernel mailing list. Someone beat me to it, though. To keep things
stock, allowing anyone to pick up any Red Hat version without this fix, I left my
cobbled-together version in the code.

The target hardware was all big endian (Motorola 68K and PPC) and the Linux
PC was an x86 little endian, so I needed to do some byte swapping to make the
whole system work. Many of the files are stored in binary (maps, adaptation,
and so on) format. The networking layer already had a byte-swapping
mechanism built in, and it worked great.

Once I had all the messaging code compiled and running, I needed an
application. The FAA agreed to fund the further development of the TP, CP, SMC
and DPS systems for desktop testing and debugging. The systems all ported
well, but the DPS had some issues with X displaying. Normally the large
2048×2048 pixel display is run on special hardware with two or three pseudo-
color physical planes. If the maps and menus are drawn on the bottom plane,
the weather on another plane and the aircraft on the top plane, the whole
display doesn't need to be redrawn if an aircraft moves. To make this plane
idea work, the color map was split into three parts. Being pseudo-color (8-bit)
limited the number of colors in each plane. The map and menu plane got one
color (white), the weather got another color (brown) and the primary display
plane got 78 colors.

So, we needed to have more color table adjustments, as normally the primary
display used 250 colors. The large display has an animated fading history trail
that emulates the fading phosphors on the vector display. It takes 128 color
cells to make the animation work. For this application I made one cell and no
animation. It looks amazingly good. Between finding all the reds that were
similar, greens that were similar, and yellows and blues and whites and grays, I
trimmed the table down to the 78 available.

Once all this was done, I was given a two-plane video card to see if the system
would still work. A change to one compile-time flag had the whole thing
working. The two-plane card puts the weather maps and menus on the same
plane.

Two things happened about this time. I delivered the Linux code to the FAA,
and a couple other developers were tasked with getting Linux working on the
target PowerPC hardware. The FAA found a few updates I hadn't kept up with in
the baseline of the code, and we were able to work together on that. The other
developers found most of my #ifdefs were specific to Linux and not the
machine architecture. Therefore, I was able to hold back my changes to the FAA
and make the proper #ifdefs when the FAA finally took it.

The PowerPC Linux Project was an attempt to improve the data recording tasks
that the SMC handles. The current system uses consumer-grade, off-the-shelf
optical disks that aren't suitable for 24/7 writing. The new system incorporates
SAN disks, which are more suitable to air traffic control needs. Although
technically a success, the project is on hold for now.

In the spring of 2003, the FAA began using the Common ARTS on Linux for a
noncritical subsystem, an inexpensive gateway system feeding ARTS data to
other systems. Full certification may happen eventually.

Tom Brusehaver is a coder grunt who has been writing code since before the
PC. He mostly does contract work these days, preferring embedded systems.
He is married and has grown kids, two cats and a dog. He is building an
airplane when the weather is nice.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/toc117.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Personal Video Recorder Basics

Christian A. Herzog

Issue #117, January 2004

Connect your satellite dish to a PC-based recorder that will time-shift your
favorite shows, make archive copies and, with plugins, more.

All our favorite TV shows are recorded digitally and edited digitally. But, we
receive them using some analog technology, such as cable, plain air or satellite.
Now, that's just wrong. Luckily, an alternative is available that offers better
picture quality, Dolby Digital sound and EPG, the electronic program guide.
Ladies and gentlemen, please welcome DVB, digital video broadcasting.

DVB works with an MPEG-2 compressed stream and has a theoretical
maximum bit rate of 15Mbit/s. Because DVB never is used for video alone,
extra audio tracks and other information are added to create a richer user
experience. All of this data is stored in small packages. Of course, if some
packets don't arrive or are corrupted, they leave artifacts in the picture and
possibly in the sound stream. The program, on the other hand, continues as if
nothing has happened once correct packages arrive again, so there is no need
to worry about bad sync. The signal also is forgiving, because the antennas
usually are dimensioned with enough reserve to cope with rain, snow or small
animals.

Three different models of DVB are available, DVB-S for satellite, DVB-C for cable
and DVB-T for terrestrial reception. All three basically are the same; the
differences lie in the tuners. DVB-T is rather new and not yet used widely; the
other two, especially the satellite variant, are quite common and popular all
over the world.

 Building the VDR

Modern set-top boxes available from major manufacturers have some nice
features, such as hard disk recording and MP3 playback. Nevertheless, they
lack more advanced options, including archival of recordings to SVCD or some

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

MPEG-4 sibling. With the advent of affordable DVD burners and media, backing
up your favorite TV shows to DVD is well within reach. In Europe, digital
personal video recorders (PVRs) carry a hefty price tag of around 500 EUR, and
most come without a hard disk. A full-featured DVB-S card, on the other hand,
can be found at on-line retailers for as low as 165 EUR.

But, what good is cheap hardware without good software? The program VDR,
video disc recorder, enables you to build a powerful set-top box on your own
using your favorite flavor of Linux and a DVB card. The machine I built
incorporates basic features, such as watching TV, recording and time-shifting,
plus advanced features, including MP3/Ogg playback, playback of all video
formats supported by MPlayer and backup of the recorded material to MPEG-4,
video CD or DVD. A commercial set-top box hardly stands a chance against this
feature list.

 Selecting Hardware

To build our box, we need some hardware. Bear in mind that the recordings
need a lot of space. A 120GB hard drive typically holds some 60 hours of video,
which should be plenty of space. You can get away with less if you back up your
movies more often to get them off the drive, but I recommend at least a 20GB
drive, which hold about three or four movies.

We also need a processor. If you want to encode the videos, you need a faster
one; if not, an old 200MHz machine should do. I wasn't able to find anything
slower than a Celeron 1,700MHz, which is more than enough power, even for
the encoding process. Playback using MPlayer also requires a fast processor
and at least 1GHz, though it's rumored to work with less. I've tested MPlayer on
a slower machine, and the image quality does suffer quite a bit. The reason for
this is the way MPlayer uses the MPEG-2 decoder on the DVB board. Non-
MPEG-1/2 material is converted to MPEG on the fly, which eats up quite a few
processor cycles.

This leads us to the most important piece of hardware; the DVB card. You need
a full-featured card with a hardware MPEG decoder. These are more expensive,
but they have several connections for sound and TV. Cards like the WinTV Nova
work best as secondary cards to record several programs at once. If you can, go
for the satellite option. It is by far the most flexible solution because you are
not dependent on some cable provider. Apart from that you can link up several
satellite dishes to watch even more channels. I also discuss the DVB-S variant in
this article, but deploying a different solution is not really a different process. I
opted for a Hauppauge Nexus-s. It's probably the most expensive card, but it
doesn't suffer from the overheating problems older models experienced, plus it
has a good tuner and comes with an infrared remote and receiver.

For the base software load, I used Red Hat Linux 9, but any distribution should
do. A small installation with GCC and development packages for libjpeg should
be enough. X isn't needed because the full-featured DVB cards have video-out
capabilities. Don't forget to install all the kernel development packages; we
need those to compile the DVB driver.

 Installing Drivers

Once the base distribution is up and running, we need a driver for the card. You
can get the CVS version at linvdr.org/download/vdr/Developer. At the time of
this writing, linux-dvb.2003-09-05.tar.bz2 is the latest version. The current
drivers sometimes hang when disconnecting the satellite cable or the reception
drops to zero. You then have to remove and re-insert the drivers, which does
not always work, leaving you with the need to reboot to get it up and running
again. These hangs can be especially pesky if you're simply recording
something or are in the middle of a movie, but they usually don't happen.

Now go to /usr/src, unpack the driver snapshot and mv it to DVB. Renaming the
directory is important because certain patches and plugins rely on directory
names. Go to the DVB directory and type make to compile the driver and some
useful applications that help you scan the satellites to retrieve a list of channels.
make install is not needed because the runvdr script we use later takes
care of the module loading. It's important to run the makedev.napi script after
compiling the drivers, as this script creates the needed entries in /dev.

 Scanning for Channels

If you live outside of Europe or don't use the Astra satellites, you have to use a
different channel list. Scanning for channels is an automated process. A tool
called scan comes with the DVB driver, and you can find it in the /apps/scan
directory. Invoke it with the -o vdr option so the output file is in VDR's
channel format. To capture the newly created channel file, you need to redirect
the programs standard output with this command:

./scan -o vdr > channels.conf

 Installing VDR

Fetch vdr-1.2.5.tar.bz2, unpack it in /usr/src and change to that directory.
Installing VDR can be a bit tricky. Because you can use some patches to spice
up the features, you quickly can end up in patch hell if you're not careful. The
best idea, if you want to use multiple patches, is to get your hands on an all-in-
one patch. I used nothing but the Elchi patch, which gives the rather dull default
VDR interface a nice face-lift. If you have the right patch for your VDR version,
you shouldn't encounter any problems.

http://linvdr.org/download/vdr/Developer

The range of additional functions added by plugins goes from simple games to
e-mail alerts to full-featured DVD playback. Here, install only two, the remote
plugin and the MP3/MPlayer playback plugin. The remote plugin is necessary
only when using the original remote from Hauppauge. The MP3/MPlayer
plugin, on the other hand, is a must-have.

Figure 1. VDR Main Menu with the Elchi Patch Applied

Change to /usr/src/vdr-1.2.5/PLUGINS/src and unpack the two packages. VDR's
Makefile won't build the plugins until you strip the version information from the
directory names, so rename them to remote and MP3. The MP3 plugin has
some additional requirements, namely libsndfile, libmad and libid3tag. Since
Red Hat ships without MP3 support, you have to install them manually. Fetch
them from www.freshrpms.org, and don't forget to install the development
packages. When everything is set, type make REMOTE=plugin
NEWSTRUCT=1 all plugins. The REMOTE=plugin parameter adds another
input method using the remote plugin. You can use Lirc to select whatever
remote you happen to find; VCR ones do rather well. Simply add
REMOTE=lirc in that case. Keyboard support is enabled by default and
shouldn't be disabled, as it can be very helpful for debugging. The
NEWSTRUCT=1 is needed to tell the plugins to search for the new drivers in /
usr/src/DVB.

Having compiled everything, we now need to edit the startup script a bit. As a
basis, use the one supplied with the remote plugin. You can find it in the misc

https://secure2.linuxjournal.com/ljarchive/LJ/117/7171f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7171f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7171f1.large.jpg
http://www.freshrpms.org

directory, named runvdr.remote. This script loads a keymap so the signals from
the remote are decoded. This is used only with Hauppauge's IR receiver. If you
don't have one, use the runvdr script in VDR's root as a starting point. Move the
runvdr.remote script to VDR's root and fire up your favorite editor. On line 24
you should find the parameters by which vdr is started. Mine looks like this:

VDRCMD="$VDRPRG -w 60 -P scanner \
 -P\"mplayer -M /video/plugins/mplayer.sh\" \
 -P mp3 \
 -P\"remote -i /dev/input/event1\" $*"

If you're unsure what you need to add, simply run vdr -help, and you should
see a list of all usable modules and their options, along with all of VDR's
options. Don't worry, it's fairly easy to find out what to add. To finish up, we
need a base directory; the default (as defined in Make.config) is /video. This
directory holds all the recordings and configuration files. Copy the sources.conf
and your channels.conf to /video.

The only thing left for us to do is write configuration files for the MPlayer/MP3
plugin. Start by creating a directory named /video/plugins. Now we need two
files, one called mp3sources.conf and one called mplayersources.conf. Writing
them is simple. For starters, add something like /video/music;Local
files;0 for mp3sources.conf and /video/compressed;Local files;
0 for mplayersources.conf and save them. To get MPlayer to work with the DVB
card, you have to recompile. Grab a copy from www.mplayerhq.hu, and add --
with-extraincdir=/usr/src/DVB/include to your configure options.
Let the configure script run, recompile and install, and you're good to go.

As you can see from the runvdr script, the MPlayer plugin uses a special shell
script to start MPlayer, mplayer.sh. You can get that from batleth.sapienti-
sat.org/projects/VDR. The package consists of only two files, mplayer.sh itself
and mplayer.sh.conf, which holds some configuration options. If your machine
is too slow to play back files using MPlayer, you should try tweaking the settings
in this file.

http://www.mplayerhq.hu
http://batleth.sapienti-sat.org/projects/VDR
http://batleth.sapienti-sat.org/projects/VDR
https://secure2.linuxjournal.com/ljarchive/LJ/117/7171f2.large.jpg

Figure 2. Defining the Keys for Your Remote

 Roll Film and Back It Up!

Go back to /usr/src/vdr-1.2.5 and run runvdr.remote. If you use Red Hat, set
the environment variable LD_ASSUME_KERNEL=2.4.1, because VDR doesn't yet
work with the native posix layer that Red Hat introduced in the latest version.
The modules for the DVB card then are loaded, and the VDR is started. Hook up
your TV, and you should see a black screen prompting you to define the keys
on your remote. After finishing the wizard, you're ready to watch TV, record
shows and remove commercials. You can listen to your MP3s and watch videos.
There's a manual in VDR's root that explains how to record and edit TV events,
using the time-shift feature.

 Back It Up

In case you're disappointed that the end of the article is within reach, don't
worry; there still are some optional things you can do. The automatic backup
feature has some limitations. Although the (S)VCD backup works flawlessly, the
DivX encoding does not crop the picture to remove black bands, should they
exist. This has quite a negative impact on bit rate, size and overall picture
quality. If you really want a high-quality, small-size MPEG-4, you should back it
up manually. The improved picture quality is well worth the trouble.

https://secure2.linuxjournal.com/ljarchive/LJ/117/7171f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7171f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7171f3.large.jpg

Figure 3. The information bar shows the program name, running TV show and what's on next.

VDR splits its recordings into 2GB files, which is a bit inconvenient for
transcoding the videos. If you go for manual conversion, which gives you finer
control over the quality/size aspect, mencoder or transcode are good options.
Use the speedy mencoder, which I found to be perfect for backups to MPEG-4,
or transcode, which comes with a lot of tools. If you favor the I-don't-want-to-
care approach, get a hold of VDRCONVERT. The README file offers a pretty
simple approach to installing it, and at least you can watch some TV while
downloading and compiling. With VDRCONVERT you have to change some
scripts and configuration files to adapt the DVD/(S)VCD resolutions to NTSC, in
case PAL is not used where you live.

It's too bad that a Linux PVR doesn't make the TV programs themselves any
better, but I guess you can't have everything, can you?

Resources

Libraries: www.freshrpms.org

LIRC: www.lirc.org

MPlayer: www.mplayer.hu

mplayer.sh: batleth.sapienti-sat.org/projects/VDR

https://secure2.linuxjournal.com/ljarchive/LJ/117/7171f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7171f3.large.jpg
http://www.freshrpms.org
http://www.lirc.org
http://www.mplayer.hu
http://batleth.sapienti-sat.org/projects/VDR

Plugins, Scripts and Patches for VDR: www.vdrportal.de/board/
portal_downloads.php?site=6

Christian A. Herzog is a programmer focused on Web development using open-
source technologies. He's still on his never-ending quest to bring a Linux-based
device to every home and company he comes across. Write him at
noeffred@gmx.net.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.vdrportal.de/board/portal_downloads.php?site=6
http://www.vdrportal.de/board/portal_downloads.php?site=6
mailto:noeffred@gmx.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/toc117.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 At the Forge

Publishing with Bricolage

Reuven M. Lerner

Issue #117, January 2004

Streamline your Web site with a professional newspaper-like publishing model.
With Bricolage, you can set up approvals and keep track of who's editing what.

If you publish an on-line newspaper or magazine, you probably already have
looked into a content management system (CMS). CMS software makes it easy
to keep track of the many pages on a Web site by handling issues as varied as
users, groups, permissions, editing responsibilities and site-wide templates. The
more pages on your site, or the more people working on it, the more likely it is
that you can benefit from a CMS.

Many companies have sprung up to meet this need, offering CMS software that
claims to do everything but write your site's content. (Although given the quality
of writing on some sites, you sometimes have to wonder.) It has taken some
time, but a number of open-source CMS packages are available that can fulfill
even the most complex site requirements. One of the most powerful and
popular packages is Bricolage, which combines the mod_perl module for
Apache, the PostgreSQL relational database and the HTML::Mason templating
system into one neat package (sourceforge.net/projects/bricolage).

In previous installments of this column, we looked at some basic configurations
of a Mason system, including alerts that can be set to fire when certain events
occur. Until now, however, we have neglected the most important task of all for
a CMS, namely, publishing content to an actual Web site. This month, we follow
an article as it goes from inception to publication, working its way down the
Bricolage publishing pathway.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://sourceforge.net/projects/bricolage

 Creating a Site

The first step in all of this is to create a Web site on which the content can be
published. I created a virtual host named output.lerner.co.il on my server, with
its own directories for error and access logs. I then added an appropriate
VirtualHost directive in my Apache configuration file, as follows:

<VirtualHost 69.55.225.93>
 ServerName output.lerner.co.il
 ServerAdmin reuven@lerner.co.il
 DocumentRoot /usr/local/apache/
 ↪v-sites/output.lerner.co.il/www
 CustomLog /usr/local/apache/v-sites/
 ↪output.lerner.co.il/logs/access-log combined
 CustomLog /usr/local/apache/v-sites/
 ↪output.lerner.co.il/logs/referer-log referer
 ErrorLog /usr/local/apache/v-sites/
 ↪output.lerner.co.il/logs/error-log
</VirtualHost>

Now, when my server receives a request for output.lerner.co.il, it looks in the
output.lerner.co.il/www directory rather than in the main document root,
generally defined to be /usr/local/apache/htdocs.

Before we can publish any articles to the Web with Bricolage, we must tell the
CMS where new files should be deposited. In Bricolage, this is done with the
Destinations menu option, under the Distributions heading. You can create
multiple output destinations, allowing you to have multiple sites with a single
Bricolage instance. This might be the case for a publisher whose staff produces
several different newspapers. Each output destination can be on the local
filesystem or on a remote site accessed by FTP.

Click on New Destination to create a new publishing destination. Most small
sites need only a single channel, which allows all documents to be exported to
the site's DocumentRoot on the disk. You then must indicate a few things: 1)
whether the Web site resides on the same computer as the Bricolage system or
whether files must be copied to a remote computer using FTP and 2) the output
channels to which this should be made private. We assume the Bricolage server
and the final Web server are on the same computer—but in a larger-scale
environment, especially where performance is an issue, it would be wise to split
them up. The first new destination screen is shown in Figure 1.

https://secure2.linuxjournal.com/ljarchive/LJ/117/7202f1.large.jpg

Figure 1. Setting Up a New Destination

Although Bricolage allows you to define new output channels, keep the default
Web channel for now. The difference between output channels and
destinations can be a bit confusing at first. Think of an output channel as a
logical target and a destination as a physical target, and then realize that you
can mix and match them in all sorts of different ways. You can have multiple
output channels going to a single destination or a single output channel going
to multiple destinations.

Once you have provided some basic information about your new destination,
you have to define at least one action (“move”) and then define the most
important part, the server section. In the server section you indicate the server
on which the files eventually should be deposited. As we've already indicated
that we are copying files rather than using FTP, we need to fill in only the
destination pathname, which should match the DocumentRoot of the Apache
virtual host where the document will be available.

 Writing and Publishing

Now that we have created an output channel, we can go back and create a new
story, putting on our reporter hat. (Remember, each of these menus normally is
meant to be used by a different person or group of people on a magazine's
staff.) Click on New Story in the the Story menu, giving it the minimum of a title,
a category (/, unless you have defined other categories) and a priority (normal).
You also can set the publication date, which indicates not only when the story
should be published to the Web, but also the URL with which it should be

https://secure2.linuxjournal.com/ljarchive/LJ/117/7202f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7202f1.large.jpg

available. Longtime readers of Salon.com probably have noticed that each
story's URL contains the date of publication; it should come as no surprise that
Bricolage, which evolved from the CMS developed at Salon, continues in that
tradition.

When you have filled in this basic information, click on the Create button. You
now have the opportunity to create the text of your article, adding paragraphs
(one at a time or separated by blank lines using the bulk Edit button). When
your story is finished, you can submit it to the Edit Desk using the Check In
button at the bottom of the page, sending it to the Edit Desk.

Unfortunately, the nature of a Web-based interface and the flexibility that
Bricolage offers means that the interface for Bricolage often is a bit complex,
forcing you to work with a number of different Submit buttons. Fortunately, the
buttons are labeled clearly, which means that even if you end up saving your
story rather than checking it in to the Edit Desk, you probably aren't going to
delete the story accidentally. That said, new Bricolage users would be wise to
read the labels on the buttons before assuming that all Submit buttons are
created equal.

Now that we have submitted the article to the Edit Desk, we change hats once
again and pretend to be the editor who has to review the story. Click on the Edit
menu under the Desks subheading in the Stories menu, and you get a list of all
stories currently checked in to the edit desk (Figure 2). Stories already
published have a P in their titlebars. Stories checked out (that is, available for
changes by an editor) can be edited. But we're not going to edit the story right
now, because we know that the author is one who consistently finishes his
sentences and carefully double-checks his work. For now, we send it along to
the Publish Desk, where things are reviewed one last time and then sent to the
Web. We do this by choosing Publish on the Move To menu and then clicking
Move Assets.

https://secure2.linuxjournal.com/ljarchive/LJ/117/7202f2.large.jpg

Figure 2. At the Edit Desk, you can check for stories ready to edit.

We then can go to the Publish Desk, where items are reviewed one final time
before they are published to the Web. Notice that Bricolage comes with built-in
support for copyediting and legal reviews. You can create new desks as well, if
your organizational structure is more complicated than the default setup.

In many ways, the Publish Desk is the same as the others; it allows you to add
notes to a story, view a story's edit trail or even see the log of changes. You also
can edit the story at the Publish Desk by checking it out and clicking on the Edit
link. The most important parts of the Publish Desk, however, are the additional
check box (marked Publish, not surprisingly) and a button marked Publish
Checked (Figure 3).

https://secure2.linuxjournal.com/ljarchive/LJ/117/7202f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7202f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7202f3.large.jpg

Figure 3. Review stories for publication at the Publish Desk.

When you click on Publish Checked, Bricolage gives you the option of indicating
when the story should be published. This is different from the publication date
of the story. You might want a story with a February 1st date, for example, to
be available on January 31st. Alternatively, you might want it to be available
only on February 7th. Clicking on the Publish Assets button puts this process in
place, with Bricolage reporting it has published the story (or stories) in
question. And sure enough, our document has been published to the URL we
assigned it earlier—in this case, as index.html in the DocumentRoot.

 Management Issues

When a print newspaper or magazine publishes a story, there is no way to
change what has been displayed. But on the Web, all you need to do is modify
the story in question, and everyone immediately sees the changes. Ignoring the
issues of journalistic ethics raised by this technological ability, Bricolage makes
it easy to correct a story and then redeploy it on the site.

To modify an already-published story, go to the Active Stories menu item, which
brings up a list of stories currently available. You can choose to check out a
story and make it available for editing by the current user. (Bricolage's version-
control system ensures that only one person can edit a file at a time.) You then
can edit the file and send it to the Edit Desk, just as you did when you originally
wrote the story. And as before, the Edit Desk must pass it along to the Publish
Desk; from there it can be published to the Web.

https://secure2.linuxjournal.com/ljarchive/LJ/117/7202f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7202f3.large.jpg

If you have worked on only small Web sites before, then this task might appear
to be far too complicated. After all, isn't part of the Web's beauty the fact that
we can change documents and immediately see the results of those changes?
It's true that a content management system introduces a set of trade-offs into
the workings of a Web site. No longer can you simply modify a file on the disk;
you must log in, check the file out, make the modifications, check it back in and
send it to the Publish Desk, which might even reject your changes.

But complicated and bureaucratic as this procedure might be, it is better than
the alternative, which is multiple people fighting over ownership of a file or
different people trying to edit a file—sometimes in different ways—on a live
site. A CMS is designed to slow you down, much as a seat belt is designed to
prevent you from moving too much. But in both cases, the restrictions are
designed to help you by stopping you from hurting yourself. Moreover, this
bureaucracy can save you in a pinch, because every previous version of the
document always is available. So if you accidentally removed half of an
important story, you can revert to the previous version that Bricolage has
stored in its database.

 Conclusion

Bricolage is a complete, sophisticated open-source content management
system with an impressive array of features. As we saw this month, we easily
can set up a Bricolage-based site and publish stories through a distribution
channel that we created with a simple set of virtual host definitions in our
Apache configuration. Next column, we conclude our discussion of Bricolage by
looking at ways in which we can customize the output templates, turning a
simple black-and-white publication into something with more pizzazz.

Reuven M. Lerner, a longtime Web/database consultant and developer, now is
a first-year graduate student in Learning Sciences at Northwestern University in
Chicago, Illinois. You can reach him at reuven@lerner.co.il.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:reuven@lerner.co.il
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/toc117.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Cooking with Linux

Scalability: from Simplicity Comes Complexity

Marcel Gagné

Issue #117, January 2004

If the idea of yet another game with cards or guns leaves you yawning, why not
amuse yourself with virtual structures, or sample our chef's tasty molecules?

It's a methanol molecule, François. Why do you ask? Non, mon ami, it may be
alcohol, but it bears no resemblance to the alcohol found in that most noble of
liquids, wine. That would be ethyl alcohol, and as you can see, its molecular
structure is quite different. Why am I doing this, you ask? Because the theme of
this issue is kernel scalability. You still do not see the connection? Kernel
scalability, François, is a fascinating area of development. This is the front line
of Linux's future, and the programmers working in this area are doing fantastic
work. It just seemed to me that because we are going to be sampling a little bit
of wine when our guests arrive, a different kind of scalability might be in order.
François, why aren't you paying attention?

Ah, our guests are here! Welcome, mes amis, to Chez Marcel, home of fine
Linux fare, exceptional wines and from-the-ground-up design. François and I
were discussing the theme of this issue. Please sit; your tables are ready and
my faithful waiter will run to the cellar immédiatement to fetch the wine. I think
the 2001 Châteauneuf-du-Pape with its rich fruit, tantalizing texture and
complex aromas should do nicely. You'll find it in the south wing next to the
entrance to the reading room.

While we wait for the wine, let me introduce you to the first item on today's
menu. As I was telling François, I felt that because we are sampling a little vin,
our features would explore scalability of a different sort. Just as a few lines of
code can have a huge impact on the performance of certain kernel functions,
so too can a few stray atoms have a massive effect on a final molecular
product. For instance, consider the difference between ethyl alcohol and
methanol. Most of us left chemistry behind a number of years ago, with the

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

possible exception of cooking, non? As part of the KDE suite, you can find a little
program from Andreas Wst called KAtomic (Figure 1). It is listed under the
Games menu along with other strategy or puzzle games.

Figure 1. Building Molecules Atom by Atom with KAtomic

If you ever have played Sokoban, you should notice some similarities here. The
premise of KAtomic is simple. Execution is somewhat more complex. You are
given a molecule, displayed in the right-hand pane, with its component atoms
scattered in a maze of sorts. Pressing the Tab key (or clicking the mouse)
selects an atom that you then set in motion by pressing one of the cursor keys.
Once in motion, the atom continues to move until it hits a barrier, either a wall
or another atom. In this way, you create complexity from simplicity. It's also a
fantastic way to eat up your free time.

Just as simple code is used to build ever more complex programs, so too can
we move from molecules to visible structures. The next item on tonight's menu
is a little hard to explain, and I must admit that I had some doubts when I first
looked at it. It's called Construo, and quite frankly, it turned out to be an
amazingly addictive little program.

Ingo Ruhnke's Construo is, in effect, a two-dimensional construction program
that lets you build objects on-screen using rods and springs connected at
points that you define. The resulting structure then can be run, which
essentially means letting real-world physical forces act on it. The idea is to build
a stable structure, which is a lot harder than it sounds. If your creation starts to

https://secure2.linuxjournal.com/ljarchive/LJ/117/7201f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7201f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7201f1.large.jpg

waver and finally crashes to the ground, it's time to rethink and modify your
construction. A note on the Construo Web site makes a point of letting us know
it is “currently not a real game”, but I beg to differ. To get in on this thought-
provoking bit of fun, head over to the Construo Web site at www.nongnu.org/
construo.

Building Construo simply is a matter of extracting, configuring and making. Yes,
mes amis, it's the classic extract and build five-step:

tar -xzvf construo-0.2.2.tar.gz
cd construo-0.2.2
./configure
make
su -c "make install"

Running make install installs the program in /usr/local/games. In that
directory, you may find two versions of the program, one called construo.x11
and the other called construo.glut. On the SuSE 8.2 notebook where I tested
Construo, I found the graphics to be sharper and the text cleaner when using
the X11 version (Figure 2).

When the program starts for the first time, you are presented with a clean
slate. At the top of the program window, you see some keyboard shortcuts. To
the right and left are control buttons. If you abandon a design halfway when
you quit, Construo returns you to that design the next time you play. If, like
François, the idea of starting clean intimidates you, click the Load button and
navigate to the Examples directory. There, you are rewarded with a number of
prebuilt structures you can modify until you feel more confident to create from
scratch.

http://www.nongnu.org/construo
http://www.nongnu.org/construo
https://secure2.linuxjournal.com/ljarchive/LJ/117/7201f2.large.jpg

Figure 2. Construo makes designing improbable structures fun.

To add a dot, left-click on the screen, move to where you want the opposite
point (or joint) to reside and left-click again. To remove a dot, right-click. At
some point, you should feel you've created something reasonably stable. Click
the Run button to set the laws of physics into motion, and watch how your
structure behaves under stress. In all likelihood, your first creation will bend,
twist, topple and eventually collapse—which can be a lot of fun. Construo lets
you set objects in motion (check out the basketball demo), put barriers in the
way (colliders) and otherwise release your creative genius.

To modify and strengthen your now—demolished creation, click Undo and your
whatever-it-is (or was) returns to its former glory. When you get bored with
creating and are ready to start anew, press C to clear the scene, and you once
again begin your mechanical ascent to new heights.

Building things on solid ground is interesting enough, but try building them in a
3-D, zero gravity, virtual world. That's the idea behind one of the strangest
games this Linux chef has ever run across. The program, called Ensemblist, was
created for a 2003 Paris game-coding exhibit. This is another one of those
deceptively simple ideas that turns out to be something much greater. All you
have to do is build the shape presented to you on-screen using simple
geometric shapes. This assembly uses simple programming and mathematical
principles: boolean, union and intersection.

https://secure2.linuxjournal.com/ljarchive/LJ/117/7201f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7201f2.large.jpg

Have I neglected to mention that the shapes are three-dimensional and floating
in a networked virtual space where they can be rotated along any axis? This is
something the authors, rixed and dom, call CSG, or constructive solid geometry
(Figure 3).

Figure 3. Building Complex Objects from Geometric Primitives in Ensemblist's CSG

Ensemblist is distributed as source from www.nongnu.org/ensemblist. After
extracting the file with tar -xzvf ensemblist.tgz and switching to the
source directory with cd ensemblist, you simply run make. When the
compile finishes, type su -c 'make install'. Now, run the program by
typing ensemblist at the command line. Ensemblist installs in /usr/local/
games by default.

What follows is a bit strange the first time around. The program connects to the
Ensemblist Web site, after which you find yourself floating above a flowchart
diagram (Figure 4) where you see your user name and your current score
(which is 1). Below that intro box are two options, OK and Quit. With your
mouse, you can zoom in and out from this landscape by moving the cursor up
or down. Click OK and you are transported to the game options, where you can
choose free play or select a campaign that takes you through some predefined
levels. You probably want to start with a campaign. You also may want to ask
François to fill up your wineglass, to steady yourself.

https://secure2.linuxjournal.com/ljarchive/LJ/117/7201f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7201f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7201f3.large.jpg
http://www.nongnu.org/ensemblist
https://secure2.linuxjournal.com/ljarchive/LJ/117/7201f4.large.jpg

Figure 4. Play Begins in Ensemblist's Surreal Virtual World

When the game starts, your selected object is presented in the center of a
spherical space bounded by fractal walls. Click the Play icon to the lower right
and the action begins. On the bottom left-hand corner, a counter ticks away.
The objects you need to use to create the final shape are geometric primitives,
and they all are sitting at the top left. These are spaced with union operators.
Clicking on the union operators selects between union (looks like a U),
intersection (an upside-down U) and minus (a minus sign). At the bottom right,
new icons appear so that you can review the original shape, quit or claim
victory.

That's all there is to it. Move shapes in and out of the central build area
according to these simple rules. This also is where you discover how difficult
simple can be. Ensemblist is very strange and strangely addictive. On
subsequent plays, you can use the --no-net option when starting the game,
because the existing levels have been downloaded to your system. Before you
click Play next time, take note of the box labeled Editor. Yes, if you feel up to it,
you even can create your own levels and help build the Ensemblist universe.

Mon Dieu! It seems that we have managed to come to the end of another
evening. Perhaps, inspired by the complex wonders that can result from the
application of simple ideas, one of you fine people might turn your talents to
building a machine that will give us more time, non? Stretching time certainly
would qualify as taking scalability to new heights. Still, there certainly is time for
another glass of wine. Relax, finish what you are working on, and François will
pour you a final glass. If you are feeling a little too relaxed, it is nice to know

https://secure2.linuxjournal.com/ljarchive/LJ/117/7201f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7201f4.large.jpg

that the only height you need to raise your wine to is your lips. A little joke, mes
amis. Enjoy! Until next time, mes amis, let us all drink to one another's health. A
votre santé Bon appétit!

Resources

Construo: www.nongnu.org/construo

Ensemblist: www.nongnu.org/ensemblist

KAtomic: games.kde.org

Marcel's Wine Page: www.marcelgagne.com/wine.html

Marcel Gagné (mggagne@salmar.com) lives in Mississauga, Ontario. He is the
author of the newly published Moving to Linux: Kiss the Blue Screen of Death
Goodbye! (ISBN 0-321-15998-5) from Addison Wesley. His first book is the
highly acclaimed Linux System Administration: A User's Guide (ISBN
0-201-71934-7). In real life, he is president of Salmar Consulting, Inc., a systems
integration and network consulting firm.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.nongnu.org/construo
http://www.nongnu.org/ensemblist
http://games.kde.org
http://www.marcelgagne.com/wine.html
mailto:mggagne@salmar.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/toc117.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Paranoid Penguin

Secure Mail with LDAP and IMAP, Part II

Mick Bauer

Issue #117, January 2004

An IMAP mail server with an LDAP directory makes things simple, secure and
easy for the user. Now Mick explains the tricky parts to make you the company
e-mail guru.

In the first part of this series on using LDAP with the Cyrus IMAP mail delivery
server (LJ, November 2003), we got as far as installing and setting up Cyrus
IMAP and Cyrus SASL. In this article, we add some users to Cyrus IMAP and
configure Postfix to deliver mail to the Cyrus IMAP server.

 Cyrus IMAP Documentation

Before we dive back in to Cyrus IMAP configuration and administration, a note
about documentation. Cyrus IMAP comes with an administrator's manual in
HTML format. In the SuSE distribution, the manual is in /usr/share/doc/
packages/cyrus-imapd/doc, and in Simon Matter's Red Hat SRPM distribution
(see Part I of this article) it's in /usr/share/doc/cyrus-imapd-2.1.12. The link
misleadingly labeled Installation actually leads not only to Cyrus installation
instructions but to configuration and administration instructions as well.
Besides this documentation, several man pages also are included with Cyrus
IMAP, most notably imapd.conf(5), imapd(8) and cyradm(1).

In addition to Cyrus IMAP's included documentation, I recommend the book
Managing IMAP by Dianna and Kevin Mullet (O'Reilly & Associates, 2000). As far
as I know, it's the only book dedicated to IMAP. Although its coverage of Cyrus
IMAP doesn't extend to LDAP, it's a well-written book that clearly explains IMAP
concepts and Cyrus IMAP administration; it also covers UW-IMAP in some
detail.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Using cyradm

Cyrus IMAP comes with a Perl script, cyradmn, that provides the most
convenient way to create and manage user mailboxes. You should understand
several things before using cyradm. First, you should run cyradm from any
account with which you also read e-mail. In other words, you never should use
an IMAP administrative account as an e-mail account. Due to unusual write-
access permissions, using such accounts to read or send e-mail can have
strange negative effects on your server. As we learned last time, Cyrus
administrative accounts are named according to the variable admins in /etc/
imapd.conf.

Second, cyradm uses the same authentication method as does the rest of Cyrus
IMAP. In my previous column, we determined this by setting /etc/imapd.conf's
variable sasl_pwcheck_method to saslauthd and by editing /etc/sysconfig/
saslauthd to use either LDAP or, in the case of SuSE, to use PAM. PAM itself can
be configured to use LDAP for IMAP transactions in the files /etc/pam.d/imap
and /etc/openldap/ldap.conf. In short, cyradm identifies and authenticates
administrative users with LDAP, assuming you've correctly configured LDAP
support in Cyrus IMAP, as described last time.

Finally, to authenticate, cyradm performs an LDAP auth lookup against your
user name and password, using the LDAP attribute UID as the search criterion.
For each user account you want to allow to run cyradm, therefore, the LDAP
record needs to contain definitions for both UID and userPassword. UID is a
required attribute and userPassword is an allowed attribute in the
posixAccount Object Class, so all IMAP user accounts need to be associated
with posixAccount.

This last point has another important ramification: in your OpenLDAP server's /
etc/openldap/slapd.conf file, you need to have access control list (ACL)
statements granting auth access to the userPassword attribute for whatever
LDAP user your IMAP server (or its saslauthd process) uses to bind to the LDAP
server (that is, to perform authentications). LDAP ACL statements are described
in the slapd.conf(5) man page and in my article “Authenticate with LDAP, Part
III” (LJ, September 2003).

cyradm usually is run as an administrative shell rather than as a command, per
se. When you invoke cyradm, supplying your user name plus the host you wish
to administer, it prompts you for a password. On successful authentication, it
begins an interactive session with its own commands and help screen. cyradm
also can be run non-interactively; see the cyradm(1) man page for information
on using cyradm for scripting.

The simplest invocation of cyradm is:

bash-$> cyradm --user username hostname

If you're running cyradm on the same host on which Cyrus IMAP is running, you
can use the hostname localhost. If the server you want to administer is a
remote host, however, specify its hostname or IP address. By default, cyradm
attempts to connect to it over TCP port 143. Because Cyrus IMAP uses this port
for clear-text communication, use the --port option to specify TCP port 993 for
TLS-encrypted communications instead, like this: --port 993. Personally, in
such situations I find it simplest to connect to my remote IMAP servers with SSH
and then run cyradm locally on the remote host using my SSH session.

Suppose I want to run cyradm locally on my IMAP server and my admin account
is called mick_admin. The command would look like this:

bash-$ cyradm -u mick_admin localhost
IMAP Password: **********

 localhost>

Notice the localhost> prompt after a successful login: I'm now logged in to a
cyradm shell session. To see a complete list of available commands, all I need
to do is type ? or help. There are 20 commands in all, and each can be
abbreviated, sometimes in two different ways. The help screen lists all versions
of each command.

 Creating Mailboxes with cyradm

To create a mailbox, I can use the command createmailbox. Alternatively, I
can use the abbreviation create or even a simple cm, like this:

localhost> cm user.bwooster
localhost>

This is the very model of command-line efficiency, but notice that the user
name corresponding to our new mailbox isn't really user.bwooster—it's simply
bwooster. The user. prefix must be used for all mailboxes you create in Cyrus
IMAP. Thus, to create a mailbox for the user bubba, I'd use the command cm
user.bubba. To then create subdirectories for that mailbox, I'd use cm
user.bubba.sent, cm user.bubba.drafts and so forth.

This user. prefix is visible only to Cyrus and to its administrators. In fact, when
our user Bubba connects to the server with Evolution or some other IMAP
client, rather than user.bubba he simply sees a folder named Inbox, even
though its real name is user.bubba. Similarly, submailboxes appear as sent,
drafts and so on, indented beneath Inbox.

Another thing worth noting about the e-mail account creation command is the
lack of any feedback whatsoever from Cyrus upon successful completion. If
you're like me, you find this unnerving; you periodically want to use the
listmailbox command, lm for short, to see what you have:

 localhost> lm
 user.bwooster (\HasNoChildren)

Believe it or not, this is all we need to do with Cyrus IMAP to allow user
bwooster to receive and read his e-mail, assuming there's an LDAP record with
a UID of bwooster. In Cyrus IMAP, creating a new user mailbox has the effect of
creating that user's IMAP account. But before I move on to the topic of
configuring the Postfix MTA to deliver e-mail to Cyrus IMAP, a few words about
Cyrus IMAP ACLs.

 Cyrus IMAP ACLs

Each mailbox in a Cyrus IMAP system can have one or more ACLs associated
with it in which each ACL defines which actions a given user may perform on
the referenced mailbox or folder. By default, a new mailbox has only one ACL,
one that grants the mailbox's owner full administrative rights over the mailbox.

Interestingly, administrators by default have only lookup and administer rights
on the new mailbox. You can look up the name of the mailbox using the
listmailbox command, and you can set ACLs on it. But if you need to delete
the mailbox, you first must create an ACL for the mailbox that grants your
administrative account administrative rights. This is a feature, not a bug; it
helps prevent things from getting deleted accidentally.

Continuing with our example, below are the commands for removing the
mailbox we just created, using our administrative account mick_admin:

$ cyradm -u mick_admin localhost
IMAP Password: *****

localhost> setaclmailbox user.bwooster mick_admin all
localhost> deletemailbox user.bwooster

The second command issued here is of particular note; it begins with the
cyradm command setaclmailbox, which may be abbreviated as sam or
setacl. This is followed by the mailbox in question (user.bwooster), in turn
followed by the account name to which we wish to grant (or deny) access,
mick_admin in this case. Finally, either a group of permission codes or a special
string is indicated. In this example, we have the special string all, which is
short for all permissions. To delete the user.bwooster mailbox, it would have
been sufficient simply to specify c, for create or delete mailbox or
submailboxes. Other possible ACL permissions are listed in Table 1.

Table 1. cyradm ACL Permission Codes (adapted from the cyradm(1) man page)

ACLs are covered in detail in the cyradm(1) man page and are explained in
Cyrus IMAP's HTML documentation. I highly recommend that you get into the
habit of at least reviewing, if not always customizing, the ACLs on each mailbox
you create with cyradm. On some sites, it may not be necessary for users to
retain the default permission c. If all user submailboxes (user.whomever.sent,
user.whomever.saved and so on) are created for them by you, for example, you
may prefer that they not have the ability to create new ones or delete them
accidentally.

Permission Description

l Lookup (visible to LIST/LSUB/UNSEEN)

r
Read (SELECT, CHECK, FETCH, PARTIAL, SEARCH, COPY

source)

s Seen (STORE \SEEN)

w Write flags other than \SEEN and \DELETED

i Insert (APPEND, COPY destination)

p Post (send mail to mailbox)

c
Create and Delete mailbox (CREATE new submailboxes,

RENAME or DELETE mailbox)

d Delete (STORE \DELETED, EXPUNGE)

a Administer (SETACL)

none Special string meaning no permissions

read Special string meaning lrs

post Special string meaning lrsp

append Special string meaning lrsip

write Special string meaning lrswipcd

all Special string meaning lrswipcda

 Configuring Postfix to Deliver to Cyrus IMAP

In Part I, I described the role of mail delivery agents (MDAs) as delivering mail to
mailboxes. Being an MDA, Cyrus IMAP can deliver mail, but it first must receive
that mail from a message transfer agent (MTA). The most popular MTA is
Sendmail, but a simpler and more secure option is Wietse Venema's excellent
Postfix (www.postfix.org). As Postfix is my MTA of choice, and because it's
available either as the default MTA or as an option in most major Linux
distributions nowadays, it's the one I explain in detail here.

Does your IMAP server need to reside on your organization's SMTP relay? It
can, but it doesn't have to. It may make more sense from the standpoints of
security and performance to keep your SMTP relay dedicated to that purpose.
You then can have your IMAP server run its own instance of Postfix that
receives mail from the dedicated SMTP relay rather than directly from other
networks' MTAs. In either case, we assume the MTA from which IMAP receives
its mail is running on the same host as Cyrus IMAP.

Three files need to be edited in order to configure Postfix to transfer mail to
Cyrus. The first file is /etc/postfix/main.cf, in which we need to add or
uncomment this line:

mailbox_transport = cyrus

The second file we need to edit is /etc/postfix/master.cf, in which we need to
add or uncomment these two lines:

cyrus unix - n n - - pipe
user=cyrus argv=/usr/libexec/cyrus/deliver -r ${sender} ${user}

Actually, the second line may differ on your system; the syntax of Cyrus' deliver
program has changed over the years. If you installed both Cyrus IMAP and
Postfix from your Linux distribution's current CDs or download site, the
included /etc/postfix/master.cf file should work without tweaking. If you
installed either Cyrus IMAP or Postfix from source code, however, you may
need to do some tweaking and Googling to get the second line exactly right.
One key piece of the second line is the path in argv=/usr/libexec/cyrus/deliver,
which must point to your local system's Cyrus deliver command.

The third and final Postfix file to edit is /etc/aliases; you may keep yours in /etc/
postfix/aliases. Unless you're using LDAP for alias lookups—a process too
involved for this article, but which I describe in the Sidebar—you need to have
at least one entry in aliases for each Cyrus mailbox, plus any aliases to those
mailboxes you need. For our example user Bubba, /etc/aliases needs the line:

bubba: bubba

http://www.postfix.org

Simple enough, right? We omit the user. prefix; Cyrus mailboxes are referred to
by user name. If your Cyrus (LDAP) user names correspond to local system user
names, you don't need aliases entries for those users. But part of Cyrus'
attraction lies in its not requiring users to have shell accounts.

If Bubba is our organization's marketing analyst, we also can add the line:

marketing_weasel: bubba

After you edit your aliases file, don't forget to use the postalias command to
generate a new alias database:

bash-$> postalias hash:/etc/aliases

Postfix and LDAP

In this article I describe how to use LDAP to authenticate Cyrus IMAP users, but
I cover Postfix only so far as pointing Postfix mail delivery at Cyrus. In fact,
Postfix also has LDAP functionality: it can use LDAP to resolve e-mail aliases to
mailbox names.

That is, you can configure Postfix to check both its local /etc/postfix/aliases
database for e-mail-alias-to-mailbox-name mappings and also to query the
local LDAP service or a remote one. This can save considerable administration
time; rather than maintaining separate alias and user databases, you can do it
all in LDAP.

However, Postfix on Red Hat 7.3 (and possibly on later versions) doesn't have
LDAP support compiled in. To determine whether your version of your
distribution of choice has LDAP support compiled in its Postfix package, use the
command postconf -m. If LDAP isn't listed among the supported Postfix
modules, you need to uninstall your Postfix package and build it yourself from
source.

See www.postfix.org for more information and for Postfix source code. Be sure
to read the instructions in ./READMES/LDAP_README in the Postfix source
code, which explains how to compile in Postfix's LDAP functionality—the
default Postfix Makefile does not do so automatically. Be sure also to read the
file /etc/postfix/samples/sample-ldap.cf, which contains the parameters you
need to add and configure in /etc/postfix/main.cf to get LDAP alias lookups
working. The latter step is extremely important, and it may take some tinkering
to get it working properly.

If you forego all this and choose instead to maintain Postfix's aliases file
separately (the old-fashioned way), then don't worry; using or not using LDAP

http://www.postfix.org

with Postfix has no ramifications whatsoever on Postfix's ability to interact with
your LDAP-authenticated Cyrus IMAP software.

 Conclusion

This is not all you need to know in order to be a Cyrus IMAP administrator, but
hopefully it's enough to get started in building an LDAP-enabled Cyrus IMAP
server. With the topics we've covered or touched on in these two articles, you
now can go on to advanced topics, including how to let users change their LDAP
passwords; how to let users use the LDAP server as an address book; how to
set up shared IMAP folders securely; and how to set up a secure Web mail
interface, such as SquirrelMail for Cyrus IMAP.

Resources

Cyrus IMAP Home Page (source, documentation and so on): asg.web.cmu.edu/
cyrus/imapd.

Mullet, Dianna, and Kevin Mullet. Managing IMAP. Sebastopol, California:
O'Reilly & Associates, 2000.

“Secure Mail with LDAP and IMAP, Part I”: /article/6998

Mick Bauer, CISSP, is Linux Journal's security editor and an IS security
consultant in Minneapolis, Minnesota. He's the author of Building Secure
Servers With Linux (O'Reilly & Associates, 2002).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://asg.web.cmu.edu/cyrus/imapd
http://asg.web.cmu.edu/cyrus/imapd
https://secure2.linuxjournal.com/ljarchive/LJ/115/6998.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/toc117.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Laptopia

Doc Searls

Issue #117, January 2004

Will your next laptop “just work” with Linux? And when will you be able to buy a
major-label laptop without a proprietary OS anyway?

Let's do a check-box progress report on Linux World Domination of computer
hardware types. We'll run down the scale, starting at the top:

• Mainframes
• Big enterprise database machines
• Big compute farms
• Symmetrical multiprocessing machines
• Small- and medium-sized business machines
• Engineering workstations
• Desktops
• Laptops
• Notebooks
• PDAs
• Embedded devices

Looks pretty good. At the high end, gains will increase as the 2.6 kernel begins
to establish itself. At the low end, the contest is all but over. Ken Nelson,
President and CEO of CACMedia (cacmedia.tv) and a veteran of the consumer
electronics business, tells me Linux “owns the embedded category”. Even
Microsoft is a distant also-ran.

The standout exceptions are desktops, laptops, notebooks and PDAs. And of
those four, the one that matters is laptops. That's where the center of gravity in
personal computing is moving today. In the last year, “Desktop Replacement”
became a leading laptop category as well as a description of what's happening
to the marketplace. Thanks to desktop-grade functionality and the growth of

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://cacmedia.tv

wireless networking, Wi-Fi-enabled laptops are doing to desktops what cell
phones did to desk phones. As a result, desktops are turning into cubicleware
at work, while at home they are morphing into forms that are sure to displace
TV as the central household entertainment appliance.

Meanwhile, laptops are getting more fully functional every day. For under
$2,000 US you can get a high-speed laptop with a 1600 × 1200 display, a
gigabyte of RAM, 80+GB of storage, a good sound system, a first-rate graphics
subsystem and a drive for burning as well as playing both CDs and DVDs. For
display alone, laptops kick desktop butt. As one hardware company executive
put it, “You want a two megapixel display—get a big-screen laptop. It's priced in
the same range as a standalone display.”

Linux isn't pushing these developments; Apple and Microsoft are. With all due
respect to the innovations involved (credit where due: there are many,
especially on Apple's part), the leverage comes from relationships between
manufacturing companies. Thanks to design agreements between laptop
makers and the sources of graphics subsystems, namely NVIDIA and ATI, new
Mac OS X and Windows laptops can play a DVD with minimal CPU involvement.
Linux doesn't have that privilege—yet.

Linus explained the situation in the long talk he gave on the Linux Lunacy Geek
Cruise in September 2003:

Quite honestly, none of the laptop vendors support
Linux at all, really. To be real. Some of them go
through a certain amount of motions. They support
Linux in certain configurations if it's not too painful.
But the amount of support tends to be okay (to a
limited degree). It may not suspend. It may not actually
do half of the things you want a laptop to do. But you
can run Linux on it. I expect that to change as
companies start to use Linux more on the desktop. If
you have a few big companies that just say, “Hey, Linux
has to work on our laptops”, suddenly hardware
manufacturers will start caring a whole lot more....

So, the good news is laptops are moving away from
the embedded machine kind of thing. They are getting
so standardized. Especially with chipsets like Centrino.
If you use the Pentium-M and you don't use Centrino,
you are doing stuff wrong—except for the fact that
they don't support (802.11) A&G; and right now you
can't get Centrino drivers for Linux....

I've also heard that they exist, but other people at Intel
say “That's crap. We have it on the road map, but we
haven't been able to get it going.” They have been
promising them for 2004, but I am not an Intel
spokesman by any stretch. So I don't know what the
actual date is. But it is supposed to come.

The thing is, when you built a laptop, you used to have
to scrounge around people's backyards to find strange
pieces of hardware just to make it all fit. And that is
definitely going away. And that's not just Centrino.
Instead of having hundreds of different chipsets that
you wire up a million different ways, you're going to
have maybe five different chipsets, and you can't wire
them up any way other than the way they are wired
up. And that's just going to happen.

This is what we had on the desktop ten years ago.
Compaq made their own PC desktops that weren't
quite standard. Actually HP was worse. And that just
went away because of standard chipsets. And it's
starting to happen in laptop space now. So, a year
from now, I'd expect...assuming we can fight those
ACPI issues...it's much more likely that when you buy a
laptop it will just work.

Markets get made in exactly two ways. The first is “find customer needs and
satisfy them.” When a bunch of companies start doing that and competing to
make the best products and services, you have a market. Reduced to a single
phrase, Marketing 101 teaches “Necessity is the mother of invention.” The
second way is less obvious, but without it we wouldn't have a single technology
category. It goes like this: make something so new and cool that customers
think they have to have it. They hardly teach this in marketing school, but if
they did, the single-phrase version would be “Invention is the mother of
necessity.”

When people ask you how Apple can drive whole markets and establish new
technology standards (hard-case floppies, SCSI, flat screens, USB, FireWire,
GUIs, Wi-Fi and so on) over and over again, point them to that second
marketing principle. Apple does a great job of inventing needs. It's a skill that
goes beyond simple innovation. Steve Jobs' genius is not his obsession with art;
that's a real asset, but it's also a red herring. His genius is knowing how
invention can lever the world.

Invention is not what Microsoft does. And it's not what Linux does, either.
Microsoft innovates, as they'll tell you, over and over again—and they're right.
The company comes up with an endless series of modest but marketable
improvements to goods largely invented elsewhere. Although Microsoft has an
abundance of red herring assets (credit where due), its real genius may lie in
the very hole where we currently find Linux in respect to laptops: in
relationships with hardware OEMs. These relationships are highly muscular on
Microsoft's part and deeply involved. Look at any laptop today, and you see a
little sticker that says “designed for Windows XP” or something similar, along
with a Microsoft Windows logo. You can imagine the extent to which Microsoft
labors, within its hardware OEM relationships, to make sure Linux has the
hardest possible time running on laptops.

And don't discount the manufacturers' shared interest in the same resistance.
No tier-one hardware manufacturer wants to see the world filled with white
box or build-it-yourself laptops. What makes each of their laptops unique may
be the very thing that keeps Linux from running on every model across the
board, from one manufacturer to another. But that's not a problem. Not in the
long run, which may not take very long at all.

In the emerging laptop market ecology, three parties will represent three
different forces: Apple the inventor, Microsoft the innovator and Linux the
disrupter.

In The Innovator's Dilemma: When New Technologies Cause Great Companies
to Fail, Clayton Christensen lays out the last two roles rather clearly. Innovators
find it hard to disrupt themselves. They resist the inevitable, even as they see it
coming. Incumbent innovators could be found in every one of the computing
categories we checked at the start of this column. Linux disrupted all of them.
The ones that embraced the disruption, starting with IBM, have made the most
of innovation as well.

Linux also will disrupt laptops and the remaining categories for the simple
reason taught in Marketing 101: necessity will mother invention. One of these
months, some company—a FedEx, a Boeing, a General Motors, a Siemens—will
call on Dell, HP and IBM to compete for filling a gargantuan Linux laptop order.
The relationship with Microsoft will be strained for the winner of the contest,
but they'll do the deal. They'll lean on Intel to release the Linux device drivers
for Centrino. They'll work with Canon and Sony to get the device drivers written
for the cameras, camcorders and scanners. They'll finish hammering out the
ACPI issues. And we'll have good, cheap Linux laptops being marketed, with real
advertising, by the big hardware OEMs.

Then you can start checking off the rest of the list.

Doc Searls is senior editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/toc117.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

EOF

Turning IT Certification on Its Ear

Evan Leibovitch

Issue #117, January 2004

How to offer better certification, for more people, at a lower price, without
vendor lock-in.

The Linux Professional Institute (LPI) was started in 1998 as a Linux certification
organization aimed at removing obstacles to open-source adoption and
increasing the skill level of its community. Since then, LPI has delivered more
than 35,000 exams in almost every country and has gained the support of
vendors, trainers, employers and governments. This success is only the
beginning, however. As an organization, LPI has the potential to turn the world
of IT certification on its ear, just as Linux itself has disrupted the software
world.

Technology-related training has become such a vendor-driven commodity that
it's merely nothing more than extensions of marketing programs of software
vendors. Nobody is taught technique anymore; it all has come down to locking
students in to one tool.

IT certification now is expected to be vendor-centric, a phenomenon unique to
the IT field. Pharmacists, for example, are not trained to understand only one
brand name of drug. Even in the case of “vendor-neutral” programs, such as
CompTIA, vendors still control the certification. The people being certified and
those who would hire them have no voice in the training content.

Although LPI has accepted vendor sponsorships to further its goals, vendors
alone do not dictate its future path. LPI is community-driven and not only
vendor-neutral, but indeed vendor-independent. For instance, the community
demanded desktop Linux certification, so LPI is working to make it a reality.
More significantly, what we are trying to do as a body is bring the IT certification

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

world kicking and screaming toward the peer-review model that people have
come to expect from other professions.

Given its perspective, LPI finds itself having less in common with other IT
certification programs available to technology professionals and more in
common with groups such as the National Organization of Competency
Assurance, whose membership is dominated by medical and vocational
certifications rather than by IT programs.

While most technology vendors have been hiking the costs of their certification
exams, the LPI is making a conscious effort to reduce the costs of its exams and
increase accessibility in every country. In some countries, the $100 US charge
for an LPI exam is an IT worker's salary for a month. Since LPI's goal is to
advance open source rather than maximize revenue, we clearly have a
challenge ahead. Even in rich countries, the fees for most certifications often
are beyond the reach of the unemployed looking for new career paths.

A major initiative within LPI is research and development in ways to lower the
cost of computer-delivered education, while improving the testing technology
to deliver hands-on testing in a scalable, cost-effective manner. Our growth is
dependent on the progress of Linux and open source, which has made some
significant inroads in the enterprise and public sector. The City of Munich's
decision in May 2003 to select Linux not only for servers but also for desktops
makes it the poster child for Linux clients. Munich's decision wasn't about price;
Microsoft fought hard to keep the business, according to published reports,
and was priced less than the Linux option. But Linux won the bid.

Although there may be no doubt Linux has global presence, LPI faces
challenges when it comes to making sure that open-source education and
certification are relevant and useful in many languages, cultures and
governmental structures. LPI from its central office alone can't make Linux
relevant everywhere around the world. Nor would a conventional branch-office
approach work either. Our community-based affiliate network is now operating
in the United States, Japan, Brazil, Canada, Germany and Austria. More national
affiliates are coming on-line every day; some of the newest additions include
Australia, Nigeria, Bulgaria and China.

The short-term goal is to expand this network of affiliates, but we have a long-
term vision as well: to make sure certification is accessible and of the highest
quality possible, while being relevant in every locale. Even with our network
growing by leaps and bounds, hurdles remain. In particular, we must make the
human resources community aware that Linux certification is available.
Organizations as a whole need to know that if they select Linux as a strategic

technology, expertise is available to them in the form of trained, certified
professionals who have passed the LPI program.

And while having one's training nullified because of a product upgrade is
frustrating, LPI also understands that re-certification over the years is as
important for the IT profession as it is any other profession. Where LPI differs
from other IT certifications is that if we introduce a re-certification program, it
will be based on fixed-year intervals rather than on product upgrades.

Like Linux itself, the certification program developed by LPI demonstrates the
power of community involvement. Unlike any other mainstream certification
program, LPI combines the strength of a worldwide grassroots network
together with experts in exam development, psychometrics and delivery. As LPI
moves forward, we intend to keep setting the example that all other IT
certifications eventually will be compelled to follow.

Evan Leibovitch is President of the Linux Professional Institute (www.lpi.org).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.lpi.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/toc117.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 IBM eServer BladeCenter

Dana Canfield

Issue #117, January 2004

Overall, the BladeCenter is a remarkable bit of engineering.

Product Information.

• Manufacturer: IBM
• URL: www.ibm.com/servers/eserver/bladecenter
• Price: BladeCenter Chassis from $2,789 US; HS20 Blade from $1,879 US;

Ethernet Switch Module $2,199 US

The Good.

• 14 servers/28 CPUs in 7U rack space.
• Fully redundant design throughout the system.
• Full Linux support on par with Windows support.
• Price point matches standalone servers after seven blades.

The Bad.

• Only one console for 14 systems.
• Support limited to certain versions of Red Hat and SuSE.
• Limited expandability.

IBM recently has begun rallying around two major server systems for Linux
deployment on the x86 architecture. On the scale-up front, IBM offers the
eServer x440 line, which boasts scalability up to 16 CPUs in a single system.
More interesting to the average user with a cluster of smaller servers is IBM's
scale-out offering, the IBM eServer BladeCenter system, a 7U rackmount
chassis supporting 14 blades.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.ibm.com/servers/eserver/bladecenter

The chassis itself consists of only a passive midplane, a CD-ROM and floppy
drive and two 10" blowers. Two redundant 230V power supply modules ship
with the unit, and two more are required if the system is running more than
five blades. A single management module with keyboard, video and mouse
(KVM) and Ethernet connections is included, and support for a redundant
management module recently was added.

Redundancy is a key design goal of the BladeCenter and little has been
overlooked. Four switch-module bays are in the rear of the chassis; the second
and fourth bays are redundant bays for the first and third bays, respectively.
For example, if you install an Ethernet switch in the first bay, you can install a
second Ethernet switch module in the third bay but not a SAN switch module.
Although allowing full redundancy, this means that only two types of switch
modules ever can be installed at a time.

Currently, IBM offers gigabit Ethernet and Fibre Channel SAN switch modules.
Internally, these switch modules connect to each individual blade, and
externally the gigabit switch offers four copper Ethernet ports while the SAN
switch offers four Fibre Channel ports. With redundant modules installed, each
blade has access to two Ethernet ports and two SAN ports. The Ethernet switch
is a full-function layer-3 switch with a powerful Web-based interface. The SAN
switch is a Qlogic SAN switch, which is configured through either a telnet
session or the Java-based management software available for both Linux and
Microsoft Windows.

The front of the BladeCenter chassis contains a single CD-ROM, floppy and USB
port that is connected by an internal USB hub/switch to each blade. This switch
is controlled by a button on each blade, and only one blade can access the CD/
floppy/USB port at a time. The keyboard, video and mouse are connected
through a separate internal switch that is controlled by a second button on
each blade. Control of the KVM and USB peripherals also can be manipulated
by using the BladeCenter's Web-based management interface, which allows the
KVM output to be controlled remotely over the Web. Unfortunately, although
redundant KVM/management modules may be installed, only one blade can be
assigned to the console at a time, even through the Web interface. This
probably is the most disappointing limitation of the BladeCenter, but it may be
less of an issue for those using the blades in a true cluster environment.

At the time of this writing, only the HS20 server blade has been released for the
BladeCenter. One might assume these blades simply would be a modified
ThinkPad on a card, but in reality the blade is a miniaturized, enterprise-class
server. Although it ships with a single CPU and 512MB of RAM, the HS20 has a
533MHz front side bus and can support two Pentium 4 Xeon CPUs (up to
2.8GHz) and four PC2100 DDR DIMMs (up to a total of 8GB). Thanks to the

hypertheading feature of the Xeon CPUs, modern Linux kernels can see two
logical CPUs for each actual CPU installed.

Each blade also has one 8MB Rage Video and two Broadcom gigabit Ethernet
controllers. Each Ethernet controller is hard-wired to a switch-module bay, and
the driver can be configured to allow these interfaces to be used individually or
in a failover fashion. Two notebook-sized IDE hard drives can be mounted in
the blade, but the optional SAN controller card overlaps with the second IDE
drive, so you can use only one IDE drive if you also are connecting to a SAN. The
SAN card is a custom Q-logic SAN card, which provides redundant pathways to
the SAN switch modules. IBM also offers a companion blade that allows two
SCSI drives to be attached to a blade, but it consumes another slot in the
chassis.

The blades are hot-swappable and generally easy to upgrade. If a blade suffers
catastrophic failure, the blade can be removed and an onboard diagnostic
system flashes an LED next to the faulty component. I did find that installing
the heatsink on the second CPU required a disturbing amount of force due to
the spring-loaded screws used to secure it.

An interesting design characteristic of the BladeCenter is that IBM promises
they eventually will release blades based on their pSeries and iSeries server
lines. This means you can mix and match both Intel and mainframe-class
blades in the same chassis. At the time of this writing, no such products have
been announced formally, though.

As mentioned earlier, the BladeCenter has a powerful Web-based interface.
Blades can be powered on and off, the CD/floppy or console port can be
switched and firmware can be updated over the Web. At this time, user names
and passwords must be defined within the management console, which is
bothersome because those user names then must be defined again in each
Ethernet and SAN switch module. In addition, security controls are coarse.
Users cannot be granted access to only certain blades or limited to performing
only certain tasks. Although users can be limited to having only view access,
this limit also prevents those users from utilizing the remote console.

In addition to the Web interface, the BladeCenter includes licenses for the
powerful IBM Director 4.1 management software, which is so featureful it
deserves its own review. It is worth mentioning that the client, agent and server
components of Director 4.1 all run under Linux and allow you to perform
diagnostics, start and stop processes and receive automated alerts about all
IBM servers from a single console.

Support for Linux on the BladeCenter is far better than I have found from any
other server vendor. Linux driver CDs are supplied in the box, and all general
management tools are written in Java with complete Linux support. In fact, I
have yet to find any management, monitoring or configuration tools related to
the BladeCenter that are Windows-only. This is a refreshing change from past
experiences with even the most dedicated Linux hardware vendors. Although
official support currently is limited to Red Hat Linux 7.3, Red Hat Advanced
Server 2.1 and SuSE Linux 8, I had no trouble running Red Hat 8.0 and 9.

If you have need of any custom peripherals, cards or interfaces on your server,
the BladeCenter is not an option as there are no PCI or per-blade I/O ports. The
addition of a single USB port dedicated to each blade would have made the
BladeCenter a more versatile system.

Another important consideration is that if you do not have a dedicated server
room, the BladeCenter can be uncomfortably loud. In fact, it is so loud that IBM
sells an Acoustic Attenuation Unit (AAU), which essentially is a large foam
muffler. Even with the AAU in place, it is possible to hear the BladeCenter
running through an office wall.

IBM claims the BladeCenter is priced so that it is a lower cost alternative to
standalone servers when buying seven or more blades. It is uncommon to find
standalone servers with the level of redundancy that the BladeCenter includes,
but I believe the cost claim to be true even compared to servers with fewer
features. Overall, the BladeCenter is a remarkable bit of engineering. It is
probably best suited for those building high-density clusters, but when coupled
with a SAN, it makes a great option for general-purpose servers as well.

Dana Canfield is a systems administrator at the University of Indianapolis,
where he constantly nags vendors to provide Linux support for anything and
everything. He can be reached at canfield@peng1.net.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:canfield@peng1.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/toc117.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Book Review: Red Hat Linux 9 Bible by Christopher

Negus

Frank Conley

Issue #115, November 2003

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/115/6919c.large.jpg

John Wiley & Sons, 2003

ISBN: 0-7645-3938-8

$49.99 US

At 1,000+ pages, calling this book a bible is not an exaggeration. Browsing its
pages, I quickly realized that it is broken into three sections, the first oriented
toward users, the second toward system administrators and the third toward
networks. The book comes with three CDs for installing Red Hat Linux 9.

The first thing I look for in a book such as this is the section that explains what
is new in Red Hat 9. The book explains it all on page 12, “Although you don't see

https://secure2.linuxjournal.com/ljarchive/LJ/115/6919c.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/115/6919c.large.jpg

it, the Native POSIX Thread Library is the most significant addition to Red Hat
Linux 9 (and the main reason why the release is called 9 instead of 8.1).” Thank
you. The book also details the components of Red Hat 9 that have been
upgraded, dropped or whose days are numbered.

Chapter 2 is worth reading in-depth, especially for a novice to Linux, for
grounding in the concepts before proceeding with the tasks. Chapters 3–9
cover the desktop, basic commands and how to run applications. These
chapters help users who are a bit disoriented when faced with a new
computing environment.

The important chapters in this book—dealing with system and network
administration—are missing what most books on Linux system administration
seem to miss: information about troubleshooting and gathering system
information.

Chapter 13, “Backing Up and Restoring Files”, is comprehensive, and I especially
enjoyed the discussion of mirrordir. The best thing about this chapter is many
solutions are discussed, and the reader can select from several options. I also
liked the quick reference charts for pax, dump and Amanda. This is not the only
chapter with these charts; they are used liberally throughout the book and are
quite handy.

Network services are easily a topic for a whole other book, and they consume
more than a third of this book. Chapter 15 discusses setting up a LAN and
includes information on wireless networks, which to me makes it timely and
useful. I'd call this a handy reference to consider and keep available, especially
for those new to Linux.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/115/toc115.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Hacking the Xbox by Andrew “bunnie” Huang

Paul Barry

Issue #117, January 2004

This book focuses on reverse engineering from the point of view of the
hardware engineer, not the software engineer.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/117/7112f1.large.jpg

No Starch Press, 2003

ISBN: 1-59327-029-1

$24.99

https://secure2.linuxjournal.com/ljarchive/LJ/117/7112f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7112f1.large.jpg

Structured around a series of hardware hacking projects that range in
complexity from installing an alternate LED and making cables to
eavesdropping on the motherboard with a custom tap board, Hacking the Xbox
explores the hardware internals of Microsoft's game console first by opening
the case, then by voiding the warranty and, finally, by taking a look around.
Doing so is a legal minefield under the controversial Digital Millennium
Copyright Act (DMCA), and discussion of the DMCA is featured frequently
throughout the text. Although primarily of interest to the North American
reader, the book provides insight into the problems that can be created by well-
intentioned but often ill-informed legislators. Hackers living in other countries
may not worry too much about the DMCA, but that's not to say there is not an
equivalent local legislation waiting in the wings.

Readers looking to learn about hacking the Xbox from a software perspective
will be intrigued but disappointed. Although it describes some important Xbox
software projects, Hacking the Xbox focuses on reverse engineering from the
point of view of the hardware engineer, not the software engineer. Detailed
instructions on getting GNU/Linux up and running on your Xbox are not here,
but they are provided elsewhere, and Andrew Huang includes the required
pointers. If you are the kind of person who is at home with a screwdriver, a
soldering iron, electronic components and PCBs, then this is the book for you.
Of course, it helps if you can stomach potentially destroying your Xbox in the
process. Not to worry, though, as Huang provides detailed instructions on
replacing damaged mass-storage devices, memory and power supplies should
anything go wrong.

Subtitled An Introduction to Reverse Engineering, Huang's Hacking the Xbox is
much more. It is an introduction to cryptography and its use in hardware
design. It is a warning on the threat to scientific pursuit that is the DMCA. It is a
primer on intellectual property law and its implications for hackers. It is a
profile of the key players in the Xbox Hacking community and it highlights their
motivations, intent and contributions. It's also a darned good read. What is
astounding is that Huang manages to do all this in under 270 pages.

Obviously, Hacking the Xbox describes the current Xbox and, now that the book
has been published (another story all in itself), it is likely that the next-
generation Xbox will change, invalidating the bulk of the book's content. That
said, the general hardware hacking techniques described in Hacking the Xbox
can be re-applied to the new Xbox, albeit without the step-by-step instructions.
Of course, with millions of original Xbox consoles shipped worldwide, there will
always be old, replaced or upgraded Xboxes to play with, so the book will have
worth for some time to come.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/toc117.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters

Readers sound off.

 Mondo and Mindi Tips

Thanks for the article about restoring with Mondo and Mindi in the October
2003 issue. It was good, but it could have included a couple more options, in my
opinion. Option -g gives a nice graphical interface to the restoration process.
Option -l GRUB -f /dev/xxx ensures that if one uses the GRUB loader, it
will be integrated nicely. Option -k FAILSAFE adds compliance with Debian/
GNU. I believe this last one is important for Debian users.

—
Jose Marrero

 NEC Source Code?

I was very interested in your article about NEC's fault-tolerant server [LJ,
October 2003]. I'm an IT consultant here in Buenos Aires, Argentina with some
exposure to fault-tolerant and mission-critical applications. I contacted Mr John
Fitzsimmons (of Aspire Communications) four or five months ago in order to
help me get the source code for NEC's FT Linux. As I understand it, the software
must be released under the GPL, but as of today I wasn't able to get the
software. So, it was great to know from your article that “...NEC told us they are
firmly committed to releasing all changes to the public under GPL.” I think I will
have to wait just a little longer. Do you have an approximate date for that
release?

One other point, as the article stated, “At the time of this writing, NEC was
reviewing and documenting its kernel changes for a planned public release,
perhaps through OSDL's Carrier Grade Linux Project...”, could you tell me what I
should do to get the release from OSDL? Will it be available to the general
public or to OSDL members only?

—
Pablo J. Rogina
IT Consultant

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Dan Wilder replies: I am not aware of any such release to date. I am copying Mr.
Fitzsimmons on this note, in hope that he may have some comment.

 Electronic-Only Subscription?

Just wondering if you are going to have an electronic copy of Linux Journal for
subscription. For readers overseas, the subscription rate is kind of expensive. I
guess that's due to the shipping cost. It would be really helpful if you could
provide the electronic copy as a subscription option, with the same cost as the
subscription rate within the States, or cheaper.

—
Simon

You're not the first person who has asked this. We don't do this yet, but I've
asked our subscription department to find out if we can. —Ed.

 Mick's LDAP and IMAP Corrections

There are two errors in my article “Secure Mail with LDAP and IMAP, Part I” [LJ,
November 2003]. First, early in the article I say (about Cyrus IMAP) “...use of
databases rather than flat files to store messages has an obvious performance
benefit.” Actually, although Cyrus IMAP does use database files for indexing
messages, it stores the messages themselves as individual flat text files.

Second, later in the article, I correctly point out that to configure Cyrus SASL on
SuSE to use LDAP, you must edit the parameter SASLAUTHD_AUTHMECH in /
etc/sysconfig/saslauthd. The problem is, the Cyrus SASL package in SuSE
doesn't have LDAP support compiled in. You either need to build your own
LDAP-enabled package with SuSE's cyrus-sasl2 source-RPM (SRPM) or forego
direct LDAP support in SASL altogether and use the PAM method instead, which
is compiled in by default. In the latter case, you need to install the module
pam_ldap, and then create a file, /etc/pam.d/imap, containing these lines:

 #%PAM-1.0
 auth required /lib/security/pam_ldap.so
 account required /lib/security/pam_ldap.so

Next, copy the file /usr/shage/doc/packages/pam_ldap/ldap.conf to /etc/
openldap/ldap.conf, and edit it to match your environment (the most relevant
settings are host, base, binddn, bindpw and TLS_REQCERT). Finally, edit /etc/
sysconfig/saslauthd to include this line:

SASLAUTHD_AUTHMECH=pam

I apologize for any confusion or inconvenience that either error may have
caused.

—
Mick Bauer

 Busy Chef Working On Another Book

Tinyminds' Tony Brijeski (Fragadelic) recently had the pleasure of sitting down
with Marcel Gagnéover some coffee and asked him some questions about his
recently released book Moving to Linux: Kiss the Blue Screen of Death Goodbye
and his views on where Linux is today. He even spilled the beans on the new
book he is currently working on; you'll have to read the interview to find out
about it at www.tinyminds.org.

—
Mark Angeli

 Modula-3 Better than C++ and Ada

This letter to the editor is a response to Dennis Ludwig's letter “Ada Isn't Awful”,
in the November 2003 issue. I am a counter-example to Dennis Ludwig's
statement “I have yet to meet an Ada basher who really knows the language.” I
have programmed in Ada, mostly full-time since 1986, done serious
development work on three Ada compilers and served as a resident Ada
language lawyer for over ten years. It's awful, and I hate it. That said, it's not
half as bad as C++, to which Ludwig primarily seems to compare Ada. I do agree
with much of his cited Web article. Both languages are horribly over-
complicated to a similar degree. Most working programmers in either language
don't even come close to understanding their language. At least Ada is strongly
type-safe, while C++ inherited all of C's worst type-unsafe and “undefined”
behaviours, so lack of understanding in Ada is more likely to show up as
compile errors instead of bugs.

But the best languages, such as the Pascals, Modula-2 and the Oberons, are an
order of magnitude simpler, and some of them have useful feature lists
comparable to Ada. My favorite is Modula-3, with a language definition ten
times smaller than Ada. It has a more flexible type-safe separate compilation,
far more powerful information hiding capabilities and a choice of garbage-
collected or explicitly deallocated heap objects, none of which are in Ada. Ada
does non-integer fixed-point types, which is very rare. Otherwise, the feature-
list differences are minor. Interested readers can read my more complete
summary of the differences between Modula-3 and Ada at www.cs.wichita.edu/
~rodney/languages/Modula-Ada-comparison.txt.

http://www.tinyminds.org
http://www.cs.wichita.edu/~rodney/languages/Modula-Ada-comparison.txt
http://www.cs.wichita.edu/~rodney/languages/Modula-Ada-comparison.txt

—
Rodney M. Bates

 TALOSS Participants

In the November 2003 issue, acknowledgements were inadvertently omitted
from the TALOSS (Three-Dimensional Advanced Localization Observation
Submarine Software) article. Mr Ken Lima of NUWC was the originator of the
TALOSS concept and the project's manager, without whose leadership this
project would not be possible. The authors also would like to thank the Office
of Naval Research (ONR) Code 311 (Mr Paul Quinn, Mr Gary Toth and Dr Larry
Rosenblum) for the funds to complete the project.

ONR (Dr Rosenblum) funded Dr Gregory Neilsen and Mr Gary Graf of Arizona
State University to develop software that computes the intersection of irregular
3-D regions within TALOSS. That software is the same software included in
TALOSS as described in the subject article. A patent application for this
software already has been prepared by its inventors (Graf, Nielsen, Lima and
Drury).

A major portion of the TALOSS software was written at Virginia Tech University
under the direction of the NUWC by graduate student, Fernando DasNeves. The
funding for his work was provided under a NAVCITTI Virginia Tech grant
administered by ONR (Dr Rosenblum).

The Naval Research Laboratory contributed that laboratory's expertise in 3-D
rendering and visualization to the NUWC-led project. NRL (initially Mr Rob King),
conducted research on 3-D interactive devices in the immersive variant of the
TALOSS. Mr Douglas Maxwell, then an NRL employee, subsequently developed
a 3-D grid-based approach to ocean floor rendering within TALOSS using the
digital nautical chart database. Mr Maxwell also developed the collision
detection algorithms used in TALOSS. Mr Maxwell's primary role, since joining
NUWC a year ago, has been as a technical consultant to the project.

Mr Richard Shell of NUWC has served as the technical lead for the TALOSS
Project for the past three years. Mr Todd Drury is the NUWC software
development lead for TALOSS and has been responsible for the design and
development of the TALOSS software for the past three years. The bottom
rendering approach currently implemented in TALOSS and referenced in the
Linux Journal article is Mr Drury's work, with Mr Maxwell's as a candidate to
follow. A patent for this software was submitted several months ago.

The authors would like to express regret in the inadvertent omission of these
acknowledgements. Thanks to the hard work and dedication of all involved, this
project was a resounding success.

—
Douglas B. Maxwell
MSME, Research Scientist/Mechanical Engineer, Naval Undersea Warfare
Center

 More on Cluster Apps Please

I have had a personal nagging curiosity to build my own home cluster out of a
few boxes that are readily available. Once I have it, what can I possibly do?
Regarding that question, your November 2003 issue was fantastic but lacked
the one thing I would like to read more about. Could you maybe consider an
article describing the different applications that are available for clusters?

—
S. B.

 Linux Training?

As a self-taught Linux user, I really enjoy and appreciate the information that
gets published in LJ. I am wanting to learn more and am looking for courses in
Linux, but only seem to find the occasional Linux conference or workshops that
offer Linux certifications. Being Linux-certified is my goal, but I know I still
require classroom study. Can you point me in the right direction? Thanks! Keep
up the good work!

—
Jason Fales
Dallas, Texas

Try the directory at lintraining.com. —Ed.

 fgets Good, gets Bad

I enjoyed Cal Erickson's article, “Writing Secure Programs”, in the November
2003 issue, and definitely plan on looking at FlawFinder and other tools. One
nit: “Do not use fgets when reading data, as this allows overflows.” I think this
was a typo; it should have read “gets...allows overflows”, because fgets has a
length parameter.

—
Collin Park

http://lintraining.com

You're right. As soon as you finish that “Intro to C” class that requires you to use
gets, you just don't use it anymore. —Ed.

 License for Bioinformatics Software

In the November 2003 cover article, “Sequencing the SARS Virus”, Krzywinski
and Butterfield refer to phred, phrap and consed as the “open-source
workhorses” of the Human Genome Project. Although these programs are
indeed bioinformatics workhorses, and although the no-fee academic licensing
terms under which they are available are generous by proprietary software
standards, the terms under which they are distributed do not conform to the
Open Source definition at least to the extent that they discriminate against
fields of endeavor. The terms apply to academic or nonprofit use but not to
business use (Open Source definition version 1.9, section 6).

BLAST, another workhorse mentioned in the article, has diverged into two main
branches, one in the public domain (which can be obtained from the National
Center for Biotechnology Information [NCBI]) and one distributed in a fashion
similar to phred, phrap and consed.

—
D. Joe Anderson

Errata

October 2003, page 88: in Listing 1 of the article “Building a Linux IPv6 DNS
Server” by David Gordon and Ibrahim Haddad, there should have been a
closing brace after the first two lines.

November 2003, page 50: in the Command-Line Bionformatics Sidebar of
“Sequencing the SARS Virus” by Martin Krzywinski and Yaron Butterfield, the t
in the third line of code should be tr.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/toc117.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 From the Editor

Tools, Tips and Tech for Your Next Project

Don Marti

Issue #117, January 2004

Whether you're designing a new home theater, an observatory or security
software, this issue has something for you.

Wouldn't things be different if you were in charge? Whether you want to
archive your favorite TV shows on DVD, add an extra security check for device
drivers without leaking information to marketing people or simply port Linux to
your new 64-processor server, you'd do things better if you ran the place.

I've got news for you. You do run the place. You're the CEO of a multinational
technology empire that has a cooperative research and development program
with governments, companies and universities around the world, even your
friend's hot new startup.

If you don't believe me, look at the COPYING and LICENSE files already on your
hard drive. Whether you're working for yourself, starting a company or even
toiling at a big company, you are free to partake in and build on the greatest
information technology research effort ever. And unlike big slow “shared
source” deals, you don't need to call a lawyer to plug in and start building.

 Personal Video Your Way

There's no better proof of that than Christian A. Herzog's article on page 30.
Want a personal video recorder that will let you make a backup? As long as the
major electronics vendors design their products for cable company lawyers,
you'll make the TV viewers in your family happier than the vendors ever will.

While you're watching TV, your hard drives are silently, or maybe not so silently,
spinning themselves to death. With Bruce Allen's article on page 74, you can get

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

an early warning and replace a drive on your schedule, not in the middle of the
night when it fails on its own.

 Kernel Power

In this special kernel issue, you'll learn that cache isn't merely a processor spec
to brag about. It's a complex resource you can either use well or “blow the
cache” and go as slow as main memory. Find out how Linux uses cache in
James Bottomley's article on page 58.

There's plenty of other kernel innovation in this issue too. Check out Greg
Kroah-Hartman's implementation of cryptographically signed kernel modules
on page 48. And Paul E. McKenney is back, this time with Dipankar Sarma and
Maneesh Soni, to explain a big performance win for SMP servers on page 38.

 Secrets of the Software Masters

Lisa Corsetti wanted a way to check whether the Ethernet cable is plugged in.
The answer opened the door to the mysteries of ioctls, and it's all explained on
page 54.

Every issue, Marcel Gagné explores some new area of software for Linux, and
this time he's creating simulated structures from molecules to bridges. Can you
build something that will stand up? Or how many links do you need to cut to
make it fall? Find out on page 18.

Don Marti is editor in chief of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/toc117.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

On the Web

Multimedia

Heather Mead

Issue #117, January 2004

If last month's issue left you hungry for more audio and video projects, feast
your eyes and ears on our Web site.

Our new products mailbox has been receiving a lot of press releases
introducing new workstations designed specifically for high-end audio and
graphic needs. If you're an animator, filmmaker or a recording engineer who
uses Linux, hardware and software companies are very interested in getting
your business. But, even if you're a regular desktop user, Linux developments
in audio and video matter, because at least some of them eventually will make
their way into a desktop distribution. So this month, we're going to point you to
some LJ Web articles that discuss what is going on in the Linux multimedia
world.

If you're interested in a sound card that lets you do more complicated audio
tasks, such as recording and mixing music, Peter Todd discusses “Using the
Hammerfall HDSP on Linux” (www.linuxjournal.com/article/7024). The
Hammerfall is a professional-grade sound card used in studios all over the
world; it also happens to run under Linux, thanks to the ALSA Project drivers. It
consists of an external module called the Multiface coupled to an internal PCI
card. Peter explains that the big difference between the Hammerfall and
regular sound cards is that the HDSP “is designed as a sound I/O device. It has
inputs and outputs, and you can route sound between them arbitrarily.” The
article also explains how to use advanced features such as an external time
code source, a must for the studio.

In the early spring of 2003, Dave Phillips, author of The Linux Book of Music &
Sound, attended the first conference held specifically for Linux audio
developers. The report he wrote for us, “Linux Audio Development: A Report
from Karlsruhe” (www.linuxjournal.com/article/6762), provides an overview of

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.linuxjournal.com/article/7024
http://www.linuxjournal.com/article/6762

the main issues discussed at the conference, as well as the directions Linux
audio development is taking. Among the topics discussed was JACK, the
software toolkit that “provides a professional-grade audio server in a low-
latency environment, making arbitrary audio signal routing possible, without
dropouts or distortion.”

Moving on to the video portion of our presentation, Roberto de Leo's article
“Self-Hosting Movies with MoviX” (/article/6474) explains how de Leo came to
start the MoviX Project for a self-hosting movie—“a Linux CD mini-distribution
that is able to boot and play automatically all audio/video files on the CD.” The
main point of the article, however, is to walk users through the process of
building their own mini-distributions, whether for playing a movie or some
other application.

Finally, Geoff Draper wrote an article for us, “The Art of Rewriting Old Games”
(www.linuxjournal.com/article/7083), in which he recounts how nostalgia for an
old favorite, Nellan Is Thirsty, led him to rewrite the old 8-bit text game. The
new version, Thirsty Nellan, “replaces the command-line parser interface of the
original game with a point-and-click GUI environment.” He also used Alias|
Wavefront for the scenery, which we must admit, is some of the cutest penguin
artwork we've ever seen. Because many of these old 8-bit games are in the
public domain, they too can be re-created for another generation of gamers.
Read the article to learn exactly what Draper did, and then go rescue your own
old favorite.

If you do rewrite an old game, set up a music studio or edit films on your Linux
machines, drop us a line and let us know how you're doing it. And, be sure to
check the Linux Journal Web site often. New articles are posted daily.

Heather Mead is senior editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/000/6474.html
http://www.linuxjournal.com/article/7083
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/toc117.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Our experts answer your technical questions.

 Fixing Swap When Moving a Drive

I am using Red Hat 9 on an HP Brio (PIII, 20GB and 192MB of RAM). I first
installed Linux when my hard drive was a primary slave. Later I changed it to
primary master. I am using a boot disk to boot in to Linux, but when I try to
boot in to the system, I get an error that the swap partition was not initialized.
The kernel could detect changes to my root and boot, but it was unable to in
the case of swap partition. How can I change the swap partition dynamically? In
other words, what parameter should I pass to the kernel before booting so as
to specify my swap at the command line? Also, can I use the same boot disk to
boot on other systems with different partition allocations, as with Windows
startup disks?

—
Aman Hardikar

cybergeek2k@rediffmail.com

This is easy to explain; Linux is looking for the swap partition on one device (the
primary slave), probably named /deb/hdbX, X being the partition number, and
it happens that it now resides on the primary master disk, which probably is /
dev/hdaX. Therefore, Linux can't find the designated swap partition and is
unable to initialize it. To fix this, edit your /etc/fstab file and change the device
on the line that has the swap entry. It may be something like:

/dev/hdb2 swap swap defaults 0 0

So, change it to:

/dev/hda2 swap swap defaults 0 0

In this example, the swap partition is number 2 on the disks. Then, reboot your
system, and it should work fine. An alternate way to reboot would be to start

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:cybergeek2k@rediffmail.com

the swap partition manually with the command swapon -a -e, after editing
the /etc/fstab file as indicated above.

—
Felipe Barousse Boué

fbarousse@piensa.com

 Serial ATA Support?

I intend to install SuSE 8.2 and want to know if I can install it on a Serial ATA
hard drive.

—
Daniel Gustafsson

gustafsson_danie@hotmail.com

Serial ATA hard drives are supported by Linux (including the SuSE 8.2
distribution's stock kernel version 2.4.19). This will be obvious, but as always,
first you must check that the BIOS and/or disk controller hardware of your
system does support Serial ATA hard drives.

—
Felipe Barousse Boué

fbarousse@piensa.com

As usual, the first question is, does your BIOS support booting from your serial
ATA interfaces? If your BIOS doesn't support booting from this controller, you
might be able to install Linux to boot from some other device.

—
Jim Dennis

jimd@starshine.org

You can look up your hardware on SuSE's component database at
hardwaredb.suse.de. Other Linux distributions also maintain their own
hardware compatibility lists. Although something technically might be
supported in the kernel version that your distribution ships, it's best to check

mailto:fbarousse@piensa.com
mailto:gustafsson_danie@hotmail.com
mailto:fbarousse@piensa.com
mailto:jimd@starshine.org
http://hardwaredb.suse.de

your distribution's hardware compatibility list before you go hardware
shopping. Items on the list are more likely to be detected by the installer
automatically, and your distribution is more likely to include up-to-date utilities
with support for items on the list.

—
Don Marti

info@linuxjournal.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/toc117.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 New Products

OpenOffice.org 1.1, Panasas ActiveScale Storage Cluster, Aqua Data Studio 3.5
and more.

OpenOffice.org 1.1

OpenOffice.org has released version 1.1 of its office suite for Linux, Windows
and Solaris in a variety of languages, including English, German, Swedish,
Spanish and Japanese. New features for version 1.1 include native, one-click
PDF export, Flash export, a faster load time, improved MS Office file
compatibility and accessibility support. In addition, support for AportisDoc,
Pocket Word and Pocket Excel has been added for easier transfer of documents
to PDAs and handheld devices. OpenOffice.org 1.1 also offers an open, future-
proof XML file format, which allows users to avoid file format lock-in situations.
The suite and its source code can be downloaded from www.openoffice.org/
dev_docs/source/download.html.

OpenOffice.org, www.openoffice.org.

Panasas ActiveScale Storage Cluster

Employing an object-based architecture that manages data as large virtual
objects, the ActiveScale Storage Cluster is comprised of the ActiveScale File
System, StorageBlades and DirectorBlades, a 4U system shelf and an integrated
gigabit Ethernet switch. The ActiveScale File System turns files into smart data
objects and then dynamically distributes data activity across the StorageBlades.
This design enables parallel data paths between servers and StorageBlades,
eliminating performance and capacity bottlenecks. Application and user data is
stored in the StorageBlades, and filesystem activity is coordinated by the
DirectorBlades. DirectorBlades also virtualize data objects across the range of
StorageBlades so the system can be viewed as a single namespace.

Panasas, 6520 Kaiser Drive, Fremont, California 94555, 510-608-7790,
www.panasas.com.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.openoffice.org/dev_docs/source/download.html
http://www.openoffice.org/dev_docs/source/download.html

Aqua Data Studio 3.5

Aqua Data Studio 3.5 is a database query and administration tool that allows
developers to create, edit and execute SQL scripts, as well as browse and
modify database structures. Aqua Data Studio provides an integrated database
environment with a single consistent interface to all major relational databases.
This allows the database administrator or developer to tackle multiple tasks
simultaneously from one application. Aqua Data Studio includes support for
such database platforms as Oracle 8i/9i, IBM DB2, Informix Dynamic Server,
Sybase Adaptive Server, Microsoft SQL Server, MySQL and PostgreSQL. New
features for version 3.5 include complete schema extractions, SQL scripting of
database objects and expanded Query Analyzer options.

AquaFold, Inc., www.aquafold.com.

https://secure2.linuxjournal.com/ljarchive/LJ/117/7196f2.large.jpg

Stratus/PMC

The Stratus/PMC is a dual-head graphics controller PMC card designed for use
in VME and CompactPCI embedded systems. It features a 128-bit graphics
module for video capture with analog/digital I/O. Stratus/PMC's two display
channels simultaneously deliver dual VGA or LVDS outputs or a single DVI
output. Using the Silicon Motion SM731 graphics accelerator, Stratus/PMC
supports single displays at screen resolutions up to 1600×1200×24bpp (with
16.7 million colors) and dual displays at 1024×768×24bpp. It also has an
onboard 33/66MHz, 32-bit PCI interface; 16MB of SDRAM on-chip; composite
and S-Video PAL/NTSC/SECAM support; and field-programmable VGA BIOS
EEPROM. Stratus/PMC offers support for VxWorks, XFree86 and Microsoft
Windows.

Peritek, 5550 Redwood Road, Oakland, California 94619, 800-281-4567,
www.peritek.com.

https://secure2.linuxjournal.com/ljarchive/LJ/117/7196f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7196f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7196f3.large.jpg

Xybernaut ServicePoint

Xybernaut has announced the release of ServicePoint, a mobile mini-server that
is configured and shipped as a mobile application services platform.
ServicePoint can function as a mobile or even wearable mini-server to direct
information and application services to various devices and users over a
wireless or wired network. Shipping with Red Hat Linux Professional Server,
ServicePoint devices include a 500MHz Mobile Celeron Ultra Low Voltage
Memory and Storage processor, 256MB of SDRAM, 5 or 10GB internal
expandable hard drives, optional external drive ports, CompactFlash and USB
ports, 8MB of SDRAM and a built-in sound card for full-duplex, stereo I/O.

Xybernaut Corporation, 12701 Fair Lakes Circle, Suite 550, Fairfax, Virginia
22033, 703-631-6925, www.xybernaut.com.

GEME Series Embedded Computers

Adlink's new embedded computer series, the General Embedded Machine
Engine (GEME), is designed for measurement, automation and communication
needs. GEME combines an embedded SBC and power supply unit with optional

https://secure2.linuxjournal.com/ljarchive/LJ/117/7196f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/117/7196f3.large.jpg

storage peripherals, such as CompactFlash or a 2.5" hard drive. Featuring
multiple mounting schemes, the modular chassis design allows one PMC and
multiple PC/104 modules to be added. GEMEs come in three base
configurations, all featuring low voltage, fanless processors and various
extension modules, including video capture, gigabit Ethernet interface, remote
I/O, serial communications and 64-channel DI/DO.

Adlink Technology America, Inc., 15279 Alton Pkwy., Suite 400, Irvine, California
92618, 949-727-2077, www.adlink.com.

NemeSys DAW64

RackSaver and AMD have collaborated on the new NemeSys 64-Bit Digital
Audio Workstation (DAW64), which features AMD's 64-bit Opteron processor.
Designed for digital audio processing, editing and mastering needs in a studio
environment, DAW64 is a 4U rackmountable system with dual Opteron
processors, 4GB of RAM, four 36GB Raptor SATA hard drives, a 3ware RAID
controller and an NVIDIA Quadro 4 380XGL graphics card. The 64-bit address
spaces provide users with direct access to virtual instruments and music
libraries in physical memory, eliminating the need for distributed content on
multiple workstations.

RackSaver, Inc., 9449 Carroll Park Drive, San Diego, California 92121,
858-874-3800, www.racksaver.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/117/toc117.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	Indepth
	Embedded
	Toolbox
	Columns
	Reviews
	Departments
	Controlling Hardware with ioctls
	Lisa

Corsetti

	Understanding Caching
	James Bottomley
	A Cache and Its Properties
	Cache Management and Coherency
	Cache-Line Interference
	Cache Management Instructions
	Types of Caches
	The Aliasing Problem
	Separate Instruction and Data Caches
	General Cache Flushing
	Caching in SMP Environments
	Conclusion

	Scaling dcache with RCU
	Paul E. McKenney
	Dipankar Sarma
	Maneesh Soni
	Linux Directory-Entry Cache
	Visual Overview of dcache
	Applying RCU to dcache
	Deferred-Free
	Rename
	Performance and Complexity Comparisons
	Future Directions
	Legal Statement

	Signed Kernel Modules
	Greg Kroah-Hartman
	How the Kernel Code Works
	How the User-Space Code Works
	What Is Left to Do?
	Acknowledgements

	Testing Applications with Xnee
	Henrik Sandklef
	The History of Xnee
	Introduction
	Xnee Installation
	Simple Usage Examples
	Setting Up Recording Ranges
	Stopping Xnee
	Synchronize
	What to Synchronize
	Conclusion

	Linux, Talon and Astronomy
	Tony Steidler-Dennison
	Using Talon
	Configuration
	Critical Configuration Files
	Critical Configuration Settings
	Using Talon

	Controlling Devices with Relays
	Jason Ellison
	Implementation Concepts
	Implementation Details
	Further Possibilities

	Intermediate Emacs Hacking
	Charles Curley
	Using Customize
	Editing Your .emacs File
	Printing
	Font Selection
	The Speedbar
	Emacs Is for E-mail
	Reading Mail

	Monitoring Hard Disks with SMART
	Bruce Allen

	Linux in Air Traffic Control
	Tom Brusehaver
	History
	Architecture
	Porting

	Personal Video Recorder Basics
	Christian A. Herzog
	Building the VDR
	Selecting Hardware
	Installing Drivers
	Scanning for Channels
	Installing VDR
	Roll Film and Back It Up!
	Back It Up

	At the Forge
	Publishing with Bricolage
	Reuven M. Lerner
	Creating a Site
	Writing and Publishing
	Management Issues
	Conclusion

	Cooking with Linux
	Scalability: from Simplicity Comes Complexity
	Marcel Gagné

	Paranoid Penguin
	Secure Mail with LDAP and IMAP, Part II
	Mick Bauer
	Cyrus IMAP Documentation
	Using cyradm
	Creating Mailboxes with cyradm
	Cyrus IMAP ACLs
	Configuring Postfix to Deliver to Cyrus IMAP
	Conclusion

	Laptopia
	Doc

Searls

	EOF
	Turning IT Certification on Its Ear
	Evan Leibovitch

	IBM eServer BladeCenter
	Dana Canfield

	Book Review: Red Hat Linux 9 Bible by Christopher
Negus
	Frank Conley

	Hacking the Xbox by Andrew “bunnie” Huang
	Paul Barry

	Letters
	Mondo and Mindi Tips
	NEC Source Code?
	Electronic-Only Subscription?
	Mick's LDAP and IMAP Corrections
	Busy Chef Working On Another Book
	Modula-3 Better than C++ and Ada
	TALOSS Participants
	More on Cluster Apps Please
	Linux Training?
	fgets Good, gets Bad
	License for Bioinformatics Software
	Errata

	From the Editor
	Tools, Tips and Tech for Your Next Project
	Don Marti
	Personal Video Your Way
	Kernel Power
	Secrets of the Software Masters

	On the Web
	Multimedia
	Heather Mead

	Best of Technical Support
	Fixing Swap When Moving a Drive
	Serial ATA Support?

	New Products
	OpenOffice.org 1.1
	Panasas ActiveScale Storage Cluster
	Aqua Data Studio 3.5
	Stratus/PMC
	Xybernaut ServicePoint
	GEME Series Embedded Computers
	NemeSys DAW64

